收藏 分享(赏)

2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt

上传人:a**** 文档编号:993113 上传时间:2025-12-22 格式:PPT 页数:75 大小:3.79MB
下载 相关 举报
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第1页
第1页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第2页
第2页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第3页
第3页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第4页
第4页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第5页
第5页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第6页
第6页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第7页
第7页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第8页
第8页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第9页
第9页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第10页
第10页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第11页
第11页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第12页
第12页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第13页
第13页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第14页
第14页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第15页
第15页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第16页
第16页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第17页
第17页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第18页
第18页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第19页
第19页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第20页
第20页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第21页
第21页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第22页
第22页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第23页
第23页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第24页
第24页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第25页
第25页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第26页
第26页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第27页
第27页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第28页
第28页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第29页
第29页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第30页
第30页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第31页
第31页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第32页
第32页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第33页
第33页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第34页
第34页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第35页
第35页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第36页
第36页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第37页
第37页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第38页
第38页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第39页
第39页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第40页
第40页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第41页
第41页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第42页
第42页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第43页
第43页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第44页
第44页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第45页
第45页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第46页
第46页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第47页
第47页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第48页
第48页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第49页
第49页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第50页
第50页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第51页
第51页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第52页
第52页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第53页
第53页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第54页
第54页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第55页
第55页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第56页
第56页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第57页
第57页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第58页
第58页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第59页
第59页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第60页
第60页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第61页
第61页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第62页
第62页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第63页
第63页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第64页
第64页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第65页
第65页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第66页
第66页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第67页
第67页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第68页
第68页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第69页
第69页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第70页
第70页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第71页
第71页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第72页
第72页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第73页
第73页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第74页
第74页 / 共75页
2014年数学理(福建用)配套课件:第七章 第六节空间直角坐标系、空间向量及其运算.ppt_第75页
第75页 / 共75页
亲,该文档总共75页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第六节空间直角坐标系、空间向量及其运算1.空间直角坐标系及有关概念(1)空间直角坐标系:名称内容空间直角坐标系以空间一点O为原点,具有相同的单位长度,给定正方向,建立三条两两垂直的数轴:x轴、y轴、z轴,这时建立了一个空间直角坐标系_.坐标原点点O 坐标轴_、_、_坐标平面通过每两个坐标轴的平面Oxyzx轴y轴z轴(2)空间中点M的坐标:空间中点M的坐标常用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x叫做点M的_,y叫做点M的_,z叫做点M的_.建立了空间直角坐标系后,空间中的点M和有序实数组(x,y,z)可建立一一对应的关系.横坐标纵坐标竖坐标2.空间两点间的距离(1)设点A

2、(x1,y1,z1),B(x2,y2,z2),则|=_.特别地,点P(x,y,z)与坐标原点O的距离为|=_.(2)设点A(x1,y1,z1),B(x2,y2,z2)是空间中两点,则线段AB的中点坐标为_.3.空间向量的有关概念名 称概 念表 示零向量模为_的向量0单位向量长度(模)为_的向量相等向量方向_且模_的向量a=b相反向量方向_且模_的向量a的相反向量为-a共线向量表示空间向量的有向线段所在的直线互相_的向量ab共面向量平行于同一个_的向量01相同相等平行或重合平面相反相等4.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b0),ab的充要条件是存在实数,使得_.(

3、2)共面向量定理:如果两个向量a,b_,那么向量p与向量a,b共面的充要条件是存在_的有序实数对(x,y),使_.(3)空间向量基本定理:如果三个向量a,b,c_,那么对空间任一向量p,存在有序实数组x,y,z,使得_.其中,a,b,c叫做空间的一个基底.惟一a=bp=xa+yb不共面p=xa+yb+zc不共线5空间向量的数量积及运算律AOB a,b0a,b|a|b|cosa,b(ab)a(b)baab+ac6空间向量的坐标运算a=(a1,a2,a3),b=(b1,b2,b3)(a,b均为非零向量),a1b1+a2b2+a3b3=0 a1b1+a2b2+a3b3判断下面结论是否正确(请在括号中

4、打“”或“”).(1)空间中任意两非零向量a,b共面.()(2)对于任意两个空间向量a,b,若ab=0,则ab.()(3)在向量的数量积运算中(ab)c=a(bc).()(4)对于非零向量b,由ab=bc,则a=c.()(5)两向量夹角的范围与两异面直线所成角的范围相同.()【解析】(1)正确.由于向量可平移,因此空间任意两向量都可平移到同一起点,故空间任意两向量共面.(2)错误.若a与b是非零向量,才有ab=0ab.(3)错误.因为两个向量的数量积的结果是数量而不是向量,(ab)c=c,a(bc)=a,故(ab)c与a(bc)不一定相等.(4)错误.根据向量数量积的几何意义,ab=bc说明a

5、在b方向上的射影与c在b方向上的射影相等,而不是a=c.(5)错误.两向量夹角的范围是0,两异面直线所成角的范围是(0,答案:(1)(2)(3)(4)(5)1.在空间直角坐标系中,点A(1,1,1)与点B(2,2,-1)之间的距离为()(A)(B)6 (C)(D)2【解析】选A.由空间两点间的距离公式可得故选A.2.有4个命题:若pxa+yb,则p与a,b共面;若p与a,b共面,则pxa+yb;若则P,M,A,B共面;若点P,M,A,B共面,则其中真命题的个数是()(A)1 (B)2 (C)3 (D)4【解析】选B.正确,中若a,b共线,p与a不共线,则p=xa+yb就不成立,正确,中若M,A

6、,B共线,点P不在此直线上,则不正确.3.在ABC中,已知D是AB边上的一点,若则的值等于_.【解析】答案:4.已知空间三点A(1,1,1),B(-1,0,4),C(2,-2,3),则的夹角_.【解析】(-2,-1,3),(-1,3,-2),(-2)(-1)+(-1)3+3(-2)=2-3-6=-7.又0,=.答案:5.在空间四边形ABCD中,=_.【解析】设=b,=c,=d,则=d-c,=d-b,=c-b.原式=b(d-c)+(c-b)d-c(d-b)=0答案:0考向 1 求空间点的坐标【典例1】(1)空间直角坐标系中,点P(2,3,4)在x轴上的射影的坐标为_.(2)已知正三棱柱ABC-A

7、1B1C1的各棱长均为2,以A为坐标原点建立适当的空间直角坐标系,求其各顶点的坐标.【思路点拨】(1)空间直角坐标系中,点在x轴上的射影的坐标满足横坐标相同,纵、竖坐标均为零.(2)分析正三棱柱底面三角形角的大小,正确选择原点及坐标轴建系.【规范解答】(1)点P(2,3,4)在x轴上的射影的横坐标与点P的横坐标相同,纵坐标、竖坐标均为0.故射影坐标为(2,0,0).答案:(2,0,0)(2)以A点为坐标原点,AC,AA1所在直线分别为y轴、z轴建立空间直角坐标系,如图所示.设AC的中点是D,连接BD,则BDy轴,且BD=,A(0,0,0),B(,1,0),C(0,2,0),A1(0,0,2),

8、B1(,1,2),C1(0,2,2).【互动探究】本例题(2)中若以AC的中点D为坐标原点,以DB,DC所在直线分别为x轴、y轴建立空间直角坐标系,试写出各顶点的坐标.【解析】建立空间直角坐标系如图所示,则A(0,-1,0),B(,0,0),C(0,1,0),A1(0,-1,2),B1(,0,2),C1(0,1,2).【拓展提升】求空间中点P的坐标的方法(1)垂面法:过点P作与x轴垂直的平面,垂足在x轴上对应的数即为点P的横坐标;同理可求纵坐标、竖坐标.(2)垂线法:从点P向三个坐标平面作垂线,所得点P到三个平面的距离等于点P的对应坐标的绝对值,再判断出对应数值的符号,进而可求得点P的坐标.【

9、变式备选】已知正方体ABCD-A1B1C1D1的棱长为2,M为A1C1中点,N为AB1中点,建立适当的坐标系,写出M,N两点的坐标.【解析】如图,以A为原点,以AB,AD,AA1所在直线为x轴,y轴,z轴建立空间直角坐标系.从M点分别向平面yAz、平面xAz、平面xAy作垂线.正方体的棱长为2,M点的坐标为(1,1,2).同理,N点坐标为(1,0,1).考向 2 空间向量的线性运算【典例2】(1)向量a=(3,5,-4),b=(2,1,8),则3a-2b=_.(2)如图所示,在平行六面体ABCD-A1B1C1D1中,设a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c

10、表示以下各向量:【思路点拨】(1)根据向量坐标运算的法则解题即可.(2)用已知向量表示未知向量时,在转化时要结合向量的线性运算.【规范解答】(1)3a-2b=3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(5,13,-28).答案:(5,13,-28)(2)P是C1D1的中点,N是BC的中点,=-a+b+=-a+b+=-a+b+c.M是AA1的中点,-a+(a+c+b)=a+b+c.又【互动探究】在本例题(2)中,若O为底面ABCD对角线AC与BD的交点,试用a,b,c表示向量【解析】【拓展提升】空间向量线性运算的方法几 何 表 示坐 标 表 示加法满足三角形法

11、则和平行四边形法则对应坐标相加减法满足三角形法则对应坐标相减数乘与平面向量数乘类似把每个坐标同乘以常数空间向量的加法与数乘满足的运算律与平面向量的对应运算满足的运算律相同【提醒】(1)进行向量的加法运算时,若用三角形法则,必须使两向量首尾相接;若用平行四边形法则,必须使两向量共起点(2)进行向量减法时,必须使两向量共起点【变式备选】如图,已知空间四边形OABC,其对角线为OB,AC.M,N分别是对边OA,BC的中点,点G在线段MN上,且MG2GN,用基底向量表示向量【解析】考向 3 共线向量定理、空间向量基本定理的应用【典例3】(1)已知向量a,b且a+2b,=-5a+6b,=7a-2b,则一

12、定共线的三点是()(A)A,B,D (B)A,B,C (C)B,C,D (D)A,C,D(2)已知a,b,c是空间的一个基底,a+b,a-b,c是空间的另一个基底,一向量p在基底a,b,c下的坐标为(4,2,3),则向量p在基底a+b,a-b,c下的坐标是()(A)(4,0,3)(B)(3,1,3)(C)(1,2,3)(D)(2,1,3)【思路点拨】(1)利用三点共线的条件验证即可.(2)用基底a+b,a-b,c表示p即可.【规范解答】(1)选A.=-5a+6b,=7a-2b,=(-5a+6b)+(7a-2b)=2a+4b.又 =a+2b,BD与AB有公共点B,A,B,D三点共线.(2)选B.

13、向量p在基底a,b,c下的坐标为(4,2,3),p=4a+2b+3c.设p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,向量p在基底a+b,a-b,c下的坐标为(3,1,3).【拓展提升】空间共线向量定理、共面向量定理的应用三点(P,A,B)共线空间四点(M,P,A,B)共面对空间任一点O,对空间任一点O,对空间任一点O,对空间任一点O,【变式训练】给出命题:若a与b共线,则a与b所在的直线平行;若a与b共线,则存在唯一的实数,使b=a;若A,B,C三点不共线,O是平面ABC外一点,则点M一定在平面ABC上,且在ABC的内部.上述命题中的真命题是_.【解析】中向量a与b

14、所在的直线也有可能重合,故是假命题;中当a=0,b0时,找不到实数,使b=a,故是假命题;可以证明中A,B,C,M四点共面,因为等式两边同时加上则又M是三个有向线段的公共点,故A,B,C,M四点共面,M是ABC的重心,所以点M在平面ABC上,且在ABC的内部,故是真命题.答案:考向 4 空间向量的数量积及其应用【典例4】(1)已知向量a=(1,1,0),b=(-1,0,2)且ka+b与2a-b互相垂直,则k=_(2)如图,在平行四边形ABCD中,AB=AC=CD=1,ACD=90,把ADC沿对角线AC折起,使AB与CD成60角,求BD的长.【思路点拨】(1)利用两向量数量积等于零,列出方程求解

15、即可.(2)由图形折叠的相关知识得到折叠后图形中线段的位置关系和数量关系,然后用根据求解【规范解答】(1)由题意得,ka+b=(k-1,k,2),2a-b=(3,2,-2)所以(ka+b)(2a-b)=3(k-1)+2k-22=5k-7=0,解得k=答案:(2)AB与CD成60角,=60或120,又AB=AC=CD=1,ACCD,ACAB,|=2或BD的长为2或【拓展提升】1.空间向量数量积的计算方法(1)定义法:设向量a,b的夹角为,则ab=abcos.(2)坐标法:设a=(x1,y1,z1),b=(x2,y2,z2),则ab=x1x2+y1y2+z1z2解题时可根据条件灵活选择方法2.数量

16、积的应用(1)求夹角:设向量a,b所成的角为,则cos 进而可求两异面直线所成的角.(2)求长度(距离):运用公式a2=aa,可使线段长度的计算问题转化为向量数量积的计算问题.(3)解决垂直问题:利用abab=0(a0,b0),可将垂直问题转化为向量数量积的计算问题【变式训练】如图所示,在空间直角坐标系中,BC2,原点O是BC的中点,点A的坐标是(0),点D在平面yOz上,且BDC90,DCB=30.(1)求向量的坐标.(2)设向量的夹角为,求cos 的值.【解析】(1)如图所示,过D作DEBC,垂足为E,在RtBDC中,由BDC=90,DCB=30,BC=2,得BD1,CDDECDsin 3

17、0=OE=OB-BDcos 60=1-D点坐标为(0,),即向量的坐标为(0,).(2)依题意知,(0),(0,-1,0),(0,1,0).所以(0,2,0).则cos=【满分指导】空间向量解答题的规范解答【典例】(13分)(2013长沙模拟)已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设(1)若c=3,且c ,求向量c的坐标.(2)若m(a+b)+n(a-b)与2a-b垂直,求m,n应满足的关系式.【思路点拨】已 知 条 件条 件 分 析A,B,C的坐标求a与b,c c=|c|=3根据模的公式建立关于的方程m(a+b)+n(a-b)与2a-b垂直数量积为0,建立

18、关于m,n的方程【规范解答】(1)由条件得a=(1,1,0),b=(-1,0,2),=(-2,-1,2).2分c .4分c=3=3,=1或=-1.c=(-2,-1,2)或c=(2,1,-2).6分(2)由条件得a+b=(0,1,2),a-b=(2,1,-2),2a-b=(3,2,-2).m(a+b)+n(a-b)=(2n,m+n,2m-2n).9分m(a+b)+n(a-b)与2a-b垂直,m(a+b)+n(a-b)(2a-b)=32n+2(m+n)-2(2m-2n)=12n-2m=0.m=6n.12分即当m=6n时,可使m(a+b)+n(a-b)与2a-b垂直.13分【失分警示】(下文见规范解

19、答过程)1.(2013长春模拟)在正方体ABCD-A1B1C1D1中,给出以下向量表达式:其中能够化简为向量的是()(A)(B)(C)(D)【解析】选A.2.(2013宝鸡模拟)已知四边形ABCD满足:则该四边形为()(A)平行四边形(B)梯形(C)长方形(D)空间四边形【解析】选D.假设为平面四边形,则由已知条件得四边形的四个外角均为锐角,但在平面四边形中,任一四边形的外角和是360,这与四个外角均为锐角矛盾,故该四边形是一个空间四边形.3.(2013上海模拟)在正方体ABCD-A1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin的值为()【解析】选B设正方体的棱长为2,以D为原

20、点建立如图所示空间直角坐标系,则=(2,-2,1),=(2,2,-1),cos=sin=4.(2013漳州模拟)已知O(0,0,0),A(1,2,3),B(2,1,2),P(1,1,2),点Q在直线OP上运动,当取最小值时,点Q的坐标是_.【解析】O(0,0,0),P(1,1,2),=(1,1,2).点Q在直线OP上运动,,故可设Q点的坐标为(,2),(1-,2-,3-2),=(2-,1-,2-2),=(1-,2-,3-2)(2-,1-,2-2)=(1-)(2-)+(2-)(1-)+(3-2)(2-2)=2-3+2+2-3+2+42-10+6=62-16+10,当=时,取得最小值,此时Q点的坐

21、标是答案:5.(2013徐州模拟)给出下列命题:=0;a-b=a+b是a,b共线的充要条件;若a与b共面,则a与b所在的直线在同一平面内;若,则P,A,B三点共线其中正确命题的序号是_【解析】由向量的运算法则知正确;只有当向量a,b共线反向且|a|b|时成立,故不正确;当a与b共面时,向量a与b所在的直线平行、重合、相交或异面,故不正确;由 1知,三点不共线,故不正确综上可得正确答案:1.设A,B,C,D是空间不共面的四点,且满足则点A在平面BCD内的射影是BCD的()(A)垂心(B)外心(C)内心(D)不能确定【解析】选A.由所以,即ACBD.同理可得ABCD,ADBC,所以A点在平面BCD内的射影是BCD的垂心.2.已知向量a=(1,2,3),b=(x,x2+y-2,y),并且a与b同向,则x,y的值分别为_.【解析】由题意知ab,所以b=(-2,-4,-6)=-2a,即a与b反向,不符合题意,应舍去.b=(1,2,3)=a,即a与b同向,故答案:1,3

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1