收藏 分享(赏)

2021-2022高中数学人教版必修5教案:3-1 不等关系与不等式 (系列三) WORD版含答案.doc

上传人:高**** 文档编号:992962 上传时间:2024-06-03 格式:DOC 页数:4 大小:95KB
下载 相关 举报
2021-2022高中数学人教版必修5教案:3-1 不等关系与不等式 (系列三) WORD版含答案.doc_第1页
第1页 / 共4页
2021-2022高中数学人教版必修5教案:3-1 不等关系与不等式 (系列三) WORD版含答案.doc_第2页
第2页 / 共4页
2021-2022高中数学人教版必修5教案:3-1 不等关系与不等式 (系列三) WORD版含答案.doc_第3页
第3页 / 共4页
2021-2022高中数学人教版必修5教案:3-1 不等关系与不等式 (系列三) WORD版含答案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.1不等式与不等关系(2) 授课类型:新授课【教学目标】1知识与技能:掌握不等式的基本性质,会用不等式的性质证明简单的不等式;2过程与方法:通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;3情态与价值:通过讲练结合,培养学生转化的数学思想和逻辑推理能力.【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;【教学难点】利用不等式的性质证明简单的不等式。【教学过程】1.课题导入在初中,我们已经学习过不等式的一些基本性质。请同学们回忆初中不等式的的基本性质。(1)不等式的两边同时加上或减去同一个数,不等号的方向不改变;即若(2)不等式的两边同时乘以或除以同一个正数

2、,不等号的方向不改变;即若(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变。即若2.讲授新课1、不等式的基本性质:师:同学们能证明以上的不等式的基本性质吗?证明:1)(ac)(bc)ab0,acbc2), 实际上,我们还有,(证明:ab,bc,ab0,bc0根据两个正数的和仍是正数,得(ab)(bc)0,即ac0,ac于是,我们就得到了不等式的基本性质:(1)(2)(3)(4)2、探索研究思考,利用上述不等式的性质,证明不等式的下列性质:(1);(2);(3)。证明:1)ab,acbc cd,bcbd 由、得 acbd2)3)反证法)假设,则:若这都与矛盾, 范例讲解:例1、已知求

3、证 。证明:以为,所以ab0,。于是 ,即由c0 ,得3.随堂练习11、课本P82的练习32、在以下各题的横线处适当的不等号:(1)()2 2;(2)()2 (1)2;(3) ;(4)当ab0时,loga logb答案:(1) (2) (3) (4) 补充例题例2、比较(a3)(a)与(a2)(a4)的大小。分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要)。根据实数运算的符号法则来得出两个代数式的大小。比较两个实数大小的问题转化为实数运算符号问题。解:由题意可知:(a3)(a)(a2)(a4)(a22a1)(a22a)0(a3)(a)(a2)(a4)随堂练习21、 比较大小:(1)(x)(x)与(x)2(2)4.课时小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论5.评价设计课本P83习题3.1A组第2、3题;B组第1题【板书设计】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3