1、圆的一般方程【教学目标】1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2y2DxEyF=0表示圆的条件,通过对方程x2y2DxEyF=0表示圆的条件的探究,培养学生探索发现及分析、解决问题的能力.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法和轨迹法求圆的方程,同时渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索,培养学生探索发现及分析解决问题的实际能力.【重点难点】教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数D、E、F.教学难点:
2、对圆的一般方程的认识、掌握和运用.【课时安排】1课时【教学过程】导入新课说出圆心为(a,b),半径为r的圆的标准方程.学生练习:将以C(a,b)为圆心,r为半径的圆的标准方程展开并整理得x2+y2-2ax-2by+a2+b2-r2=0.指出:如果D=-2a,E=-2b,F=a2+b2-r2,得到方程x2+y2+Dx+Ey+F=0,这说明圆的方程还可以表示成另外一种非标准方程形式.能不能说方程x2+y2+Dx+Ey+F=0所表示的曲线一定是圆呢?这就是我们本堂课的内容,教师板书课题:圆的一般方程.推进新课新知探究提出问题前一章我们研究直线方程用的什么顺序和方法?这里我们研究圆的方程是否也能类比研
3、究直线方程的顺序和方法呢?给出式子x2+y2+Dx+Ey+F=0,请你利用配方法化成不含x和y的一次项的式子.把式子(xa)2(yb)2=r2与x2+y2+Dx+Ey+F=0配方后的式子比较,得出x2+y2+Dx+Ey+F=0表示圆的条件.对圆的标准方程与圆的一般方程作一比较,看各自有什么特点?讨论结果:以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式、两点式、)展开整理而得到的.我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准
4、形式展开,整理得到,也是从特殊到一般.把式子x2+y2+Dx+Ey+F=0配方得(x+)2+(y+)2=.(xa)2(yb)2=r2中,r0时表示圆,r=0时表示点(a,b),r0时不表示任何图形.因此式子(x+)2+(y+)2=.()当D2+E2-4F0时,表示以(-,-)为圆心,为半径的圆;()当D2+E2-4F=0时,方程只有实数解x=-,y=-,即只表示一个点(-,-);()当D2+E2-4F0时,方程没有实数解,因而它不表示任何图形. 综上所述,方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx
5、+Ey+F=0表示的曲线不一定是圆,只有当D2+E2-4F0时,它表示的曲线才是圆.因此x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F0. 我们把形如x2+y2+Dx+Ey+F=0表示圆的方程称为圆的一般方程. 圆的一般方程形式上的特点: x2和y2的系数相同,不等于0.没有xy这样的二次项. 圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了. 与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.应用示例例1 判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径
6、.(1)4x2+4y2-4x+12y+9=0;(2)4x2+4y2-4x+12y+11=0.解:(1)由4x2+4y2-4x+12y+9=0,得D=-1,E=3,F=,而D2+E2-4F=1+9-9=10,所以方程4x2+4y2-4x+12y+9=0表示圆的方程,其圆心坐标为(,-),半径为;(2)由4x2+4y2-4x+12y+11=0,得D=-1,E=3,F=,D2+E2-4F=1+9-11=-10,所以方程4x2+4y2-4x+12y+11=0不表示圆的方程.点评:对于形如Ax2+By2+Dx+Ey+F=0的方程判断其方程是否表示圆,要化为x2+y2+Dx+Ey+F=0的形式,再利用条件
7、D2+E2-4F与0的大小判断,不能直接套用.另外,直接配方也可以判断.变式训练 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0;(2)x2+y2+2by=0.解:(1)把x2+y2-8x+6y=0配方,得(x4)2(y+3)2=52,所以圆心坐标为(4,-3),半径为5;(2)x2+y2+2by=0配方,得x2(y+b)2=b2,所以圆心坐标为(0,-b),半径为|b|.例2 求过三点O(0,0)、M1(1,1)、M2(4,2)的圆的方程,并求圆的半径长和圆心坐标.解:方法一:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、M1、M2在圆上,则有解得D=-8,E=6,F=0
8、,故所求圆的方程为x2+y2-8x+6y=0,即(x4)2(y+3)2=52.所以圆心坐标为(4,-3),半径为5.方法二:先求出OM1的中点E(,),M1M2的中点F(,),再写出OM1的垂直平分线PE的直线方程y-=-(x-), AB的垂直平分线PF的直线方程y-=-3(x-), 联立得得则点P的坐标为(4,-3),即为圆心.OP=5为半径.方法三:设所求圆的圆心坐标为P(a,b),根据圆的性质可得|OP|=|AP|=|BP|,即x2+y2=(x-1)2+(y-1)2=(x-4)2+(y-2)2,解之得P(4,-3),OP=5为半径.方法四:设所求圆的方程为(xa)2(yb)2=r2,因为
9、O(0,0)、A(1,1)、B(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于a、b、r的方程组,即解此方程组得所以所求圆的方程为(x4)2(y+3)2=52,圆心坐标为(4,-3),半径为5.点评:请同学们比较,关于何时设圆的标准方程,何时设圆的一般方程.一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.例3 已知点P(10,0),Q为圆x2+y2=16上一动点.当Q在圆上运动时,求PQ的中点M的轨迹方程.活动:学生回想求曲线方程的方法与步骤
10、,思考讨论,教师适时点拨提示,本题可利用平面几何的知识,见中点作中线,利用中线定长可得方程,再就是利用求曲线方程的办法来求.图1解法一:如图1,作MNOQ交x轴于N,则N为OP的中点,即N(5,0).因为|MN|=|OQ|=2(定长).所以所求点M的轨迹方程为(x-5)2+y2=4.点评:用直接法求轨迹方程的关键在于找出轨迹上的点应满足的几何条件,然后再将条件代数化.但在许多问题中,动点满足的几何条件较为隐蔽复杂,将它翻译成代数语言时也有困难,这就需要我们探讨求轨迹问题的新方法.转移法就是一种很重要的方法.用转移法求轨迹方程时,首先分析轨迹上的动点M的运动情况,探求它是由什么样的点控制的.解法
11、二:设M(x,y)为所求轨迹上任意一点Q(x0,y0).因为M是PQ的中点,所以 (*)又因为Q(x0,y0)在圆x2+y2=16上,所以x02+y02=16.将(*)代入得(2x-10)2+(2y)2=16.故所求的轨迹方程为(x-5)2+y2=4.点评:相关点法步骤:设被动点M(x,y),主动点Q(x0,y0).求出点M与点Q坐标间的关系 ()从()中解出 ()将()代入主动点Q的轨迹方程(已知曲线的方程),化简得被动点的轨迹方程.这种求轨迹方程的方法也叫相关点法,以后要注意运用.变式训练 已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4上运动,求线段AB的中点M的
12、轨迹方程.解:设点M的坐标是(x,y),点A的坐标是(x0,y0).由于点B的坐标是(4,3)且M是线段AB的中点,所以x=,y=.于是有x0=2x-4,y0=2y-3. 因为点A在圆(x+1)2+y2=4上运动,所以点A的坐标满足方程(x+1)2+y2=4,即(x0+1)2+y02=4.把代入,得(2x-4+1)2+(2y-3)2=4,整理,得(x-)2+(y-)2=1.所以点M的轨迹是以(,)为圆心,半径长为1的圆.拓展提升问题:已知圆x2+y2-x-8y+m=0与直线x+2y-6=0相交于P、Q两点,定点R(1,1),若PRQR,求实数m的值.解:设P(x1,y1)、Q(x2,y2),由
13、消去y得5x2+4m-60=0. 由题意,方程有两个不等的实数根,所以60-4m0,m15.由韦达定理因为PRQR,所以kPRkQR=-1.所以=-1,即(x1-1)(x2-1)+(y1-1)(y2-1)=0,即x1x2-(x1+x2)+y1y2-(y1+y2)+2=0. 因为y1=3-,y2=3,所以y1y2=(3-)(3)=9-(x1+x2)+=9+,y1+y2=6,代入得x1x2+5=0,即(m-12)+5=0.所以m=10,适合m15.所以实数m的值为10.课堂小结1.任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,只有D2+E2-4F0时,方程表示圆心为(-,-),半径为r=的圆.2.求圆的方程,应根据条件特点选择合适的方程形式:若条件与圆心、半径有关,则宜用标准方程;若条件主要是圆所经过的点的坐标,则宜用一般方程.3.要画出圆的图像,必须要知道圆心坐标和半径,因此应掌握利用配方法将圆的一般方程化为标准方程的方法.作业习题4.1 A组1、6,B组1、2、3.