ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:149.50KB ,
资源ID:988957      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-988957-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版必修2教案:3-3-3点到直线的距离 (系列三) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版必修2教案:3-3-3点到直线的距离 (系列三) WORD版含答案.doc

1、333点到直线的距离公式三维目标:知识与技能:1. 理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;能力和方法: 会用点到直线距离公式求解两平行线距离情感和价值:1。 认识事物之间在一定条件下的转化。用联系的观点看问题教学重点:点到直线的距离公式教学难点:点到直线距离公式的理解与应用.教学方法:学导式教 具:多媒体、实物投影仪教学过程一、情境设置,导入新课:前面几节课,我们一起研究学习了两直线的平行或垂直的充要条件,两直线的夹角公式,两直线的交点问题,两点间的距离公式。逐步熟悉了利用代数方法研究几何问题的思想方法.这一节,我们将研究怎样由点的坐标和直线的方程直接求点P到直线的距离。 用

2、POWERPOINT打出平面直角坐标系中两直线,进行移动,使学生回顾两直线的位置关系,且在直线上取两点,让学生指出两点间的距离公式,复习前面所学。要求学生思考一直线上的计算?能否用两点间距离公式进行推导?两条直线方程如下:. 二、讲解新课:1点到直线距离公式:点到直线的距离为: (1)提出问题在平面直角坐标系中,如果已知某点P的坐标为,直线0或B0时,以上公式,怎样用点的坐标和直线的方程直接求点P到直线的距离呢? 学生可自由讨论。(2)数行结合,分析问题,提出解决方案学生已有了点到直线的距离的概念,即由点P到直线的距离d是点P到直线的垂线段的长.这里体现了“画归”思想方法,把一个新问题转化为

3、一个曾今解决过的问题,一个自己熟悉的问题。画出图形,分析任务,理清思路,解决问题。方案一:设点P到直线的垂线段为PQ,垂足为Q,由PQ可知,直线PQ的斜率为(A0),根据点斜式写出直线PQ的方程,并由与PQ的方程求出点Q的坐标;由此根据两点距离公式求出PQ,得到点P到直线的距离为d 此方法虽思路自然,但运算较繁.下面我们探讨别一种方法方案二:设A0,B0,这时与轴、轴都相交,过点P作轴的平行线,交于点;作轴的平行线,交于点,由得.所以,PPSS由三角形面积公式可知:SPPS所以可证明,当A=0时仍适用这个过程比较繁琐,但同时也使学生在知识,能力,意志品质等方面得到提高。3例题应用,解决问题。例

4、1 求点P=(-1,2)到直线 3x=2的距离。解:d=例2 已知点A(1,3),B(3,1),C(-1,0),求三角形ABC的面积。解:设AB边上的高为h,则S= ,AB边上的高h就是点C到AB的距离。AB边所在直线方程为即x+y-4=0。点C到X+Y-4=0的距离为hh=,因此,S=通过这两道简单的例题,使学生能够进一步对点到直线的距离理解应用,能逐步体会用代数运算解决几何问题的优越性。同步练习:114页第1,2题。4拓展延伸,评价反思。(1) 应用推导两平行线间的距离公式已知两条平行线直线和的一般式方程为:,:,则与的距离为证明:设是直线上任一点,则点P0到直线的距离为又 即,d 的距离.解法一:在直线上取一点P(,0),因为 例3 求两平行线:,:,所以点P到的距离等于与的距离.于是解法二:又.由两平行线间的距离公式得 四、课堂练习:已知一直线被两平行线3x+4y-7=0与3x+4y+8=0所截线段长为3。且该直线过点(2,3),求该直线方程。五、小结 :点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式六、课后作业:七板书设计:点到直线的距离公式点到直线的距离公式两平行线间距离公式

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3