ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:80.50KB ,
资源ID:988236      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-988236-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版必修2教案:3-1-1倾斜角与斜率 (系列一) WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版必修2教案:3-1-1倾斜角与斜率 (系列一) WORD版含答案.doc

1、倾斜角与斜率【教学目标】1.理解直线的倾斜角和斜率的定义,充分利用斜率和倾斜角是从数与形两方面刻划直线相对于x轴倾斜程度的两个量这一事实,在教学中培养学生数形结合的数学思想.2.掌握经过两点P1(x1,y1)和P2(x2,y2)的直线的斜率公式:k=(x1x2),培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.3.培养和提高学生联系、对应、转化等辩证思维能力,认识事物之间的相互联系,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.【重点难点】教学重点:直线的倾斜角和斜率概念以及过两点的直线的斜率公式.教学难点:斜率公式的推导.【课时安排】1课时【教学

2、过程】导入新课如图1所示,在直角坐标系中,过点P的一条直线绕P点旋转,不管旋转多少周,它对x轴的相对位置有几种情形?教师引入课题:直线的倾斜角和斜率.图1推进新课新知探究提出问题怎样描述直线的倾斜程度呢?图2中标出的直线的倾斜角对不对?如果不对,违背了定义中的哪一条?图2直线的倾斜角能不能是0?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?日常生活中,还有没有表示倾斜程度的量?正切函数的定义域是什么?任何直线都有斜率么?我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾斜角和斜率呢?如:已知A(2,3)、B(1,4),则直线AB的斜率是多少?活动:与交

3、角有关.当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.可见:平面上的任一直线都有唯一的一个倾斜角,并且倾斜角定了,直线的方向也就定了.考虑正方向.动手在坐标系中作多条直线,可知倾斜角的取值范围是0180.在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角都能确定一条直线的方向.倾斜角直观地表示了直线对x轴正方向的倾斜程度.规定:当直线和x轴平行或重合时,直线倾斜角为0,所以倾斜角的范围是0180.联想小时候玩的滑梯,结合坡度比给出斜率定义,直线斜率的概念.倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k

4、=tan.教师介绍正切函数的相关知识.说明:直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(倾斜角是90的直线没有斜率)已知直线l上的两点P1(x1,y1),P2(x2,y2),且直线l与x轴不垂直,如何求直线l的斜率?教学时可与教材上的方法一样推出.讨论结果:用倾斜角.都不对.与定义中的x轴正方向、直线向上方向相违背.直线的倾斜角能是0,能是锐角,能是直角,能是钝角,不能是平角,不能大于平角.有,常用的有坡度比.90的正切值不存在.倾斜角是90的直线没有斜率.过两点P1(x1,y1)、P2(x2,y2)的直线的斜率公式k=.应用示例例1 已知A(3,2),B(-4,1),C(0

5、,-1),求直线AB,BC,CA的斜率,并判断它们的倾斜角是钝角还是锐角.活动:引导学生明确已知两点坐标,由斜率公式代入即可求得k的值;而当k=tan0时,倾斜角是钝角;而当k=tan0时,倾斜角是锐角;而当k=tan=0时,倾斜角是0.解:直线AB的斜率k1=0,所以它的倾斜角是锐角;直线BC的斜率k2=-0.50,所以它的倾斜角是钝角;直线CA的斜率k3=10,所以它的倾斜角是锐角.变式训练 已知A(1,3),B(0,2),求直线AB的斜率及倾斜角.解:kAB=,直线倾斜角的取值范围是0180,直线AB的倾斜角为60.例2 在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直

6、线a,b,c,l.活动:要画出经过原点的直线a,只要再找出a上的另外一点M.而M的坐标可以根据直线a的斜率确定.解:设直线a上的另外一点M的坐标为(x,y),根据斜率公式有:1=,所以x=y.可令x=1,则y=1,于是点M的坐标为(1,1).此时过原点和点M(1,1),可作直线a.同理,可作直线b,c,l.变式训练1.已知直线的倾斜角,求直线的斜率:(1)=0;(2)=60;(3)=90.活动:指导学生根据定义直接求解.解:(1)tan0=0,倾斜角为0的直线斜率为0.(2)tan60=,倾斜角为60的直线斜率为.(3)tan90不存在,倾斜角为90的直线斜率不存在.点评:通过此题训练,意在使

7、学生熟悉特殊角的斜率.2.关于直线的倾斜角和斜率,下列哪些说法是正确的( )A.任一条直线都有倾斜角,也都有斜率B.直线的倾斜角越大,它的斜率就越大C.平行于x轴的直线的倾斜角是0或;两直线的倾斜角相等,它们的斜率也相等D.直线斜率的范围是(,)答案:D拓展提升已知点A(-2,3),B(3,2),过点P(0,-2)的直线l与线段AB有公共点,求直线l的斜率k的取值范围.分析:利用数形结合同时注意直线斜率不存在的特殊情形.答案:(-,)(-,+).课堂小结通过本节学习,要求大家:(1)掌握已知直线的倾斜角求斜率;(2)直线倾斜角的概念及直线倾斜角的范围;(3)直线斜率的概念;(4)已知直线的倾斜角(或斜率),求直线的斜率(或倾斜角)的方法.作业习题3.1 A组3、4、5.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3