收藏 分享(赏)

拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc

上传人:高**** 文档编号:987057 上传时间:2024-06-03 格式:DOC 页数:8 大小:131.50KB
下载 相关 举报
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第1页
第1页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第2页
第2页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第3页
第3页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第4页
第4页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第5页
第5页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第6页
第6页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第7页
第7页 / 共8页
拿高分选好题 高中新课程数学(苏教)二轮复习精选过关检测2 WORD版含答案.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、过关检测(二)(时间:120分钟满分:160分)一、填空题(本题共14小题,每小题5分,共70分)1log2sinlog2cos_.2(2012苏锡常镇调研)已知钝角满足cos ,则tan的值为_3(2012南京、盐城模拟)已知正ABC的边长为1,73,则_.4(2012盐城模拟)函数f(x)sin 2xsincos 2xcos在上的单调递增区间为_5(2011盐城调研)ABC中,a,b,c分别是角A,B,C的对边,向量m(2sin B,2cos 2B),n,mn,B_.6(2010常州调研)在ABC所在平面上有三点P,Q,R,满足,则PQR的面积与ABC的面积之比为_7(2010湖北卷)已知

2、ABC和点M满足0.若存在实数m使得m成立,则m_.8已知,2,则sin值为_9下列五个命题:ysin4xcos4x的最小正周期是;终边在y轴上的角的集合是;在同一坐标系中,ysin x的图象和yx的图象有三个公共点;ysin在0,上是减函数;把y3sin的图象向右平移得到y3sin 2x的图象其中真命题的序号是_10已知O为平面内一点,A、B、C是平面上不共线的三点,动点P满足,(0,),则动点P的轨迹一定通过ABC的_11(2010泰州期末)在等腰直角三角形ABC中,A90,AB,AD是BC边上的高,P为AD的中点,点M,N分别为AB边和AC边上的点,且M,N关于直线AD对称,当时,_.1

3、2(2010通州检测改编)如图,在直角三角形ABC中,AC,BC1,点M,N分别是AB,BC的中点,点P是ABC(包括边界)内任一点,则的取值范围为_13已知O是ABC所在平面内一点,满足0,|1,则ABC是_三角形14设,则函数y的最小值为_二、解答题(本题共6小题,共90分)15(本小题满分14分)已知a(sin ,1), b(cos ,2),.(1)若ab,求tan 的值;(2)若ab,求sin的值16(本小题满分14分)(2012常州质量检测)已知m、xR,向量a(x,m),b(m1)x,x);(1)当m0时,若|a|b|,求x的取值范围;(2)若ab1m对任意实数x恒成立,求m的取值

4、范围17(本小题满分14分)已知向量m与n(3,sin Acos A)共线,其中A是ABC的内角(1)求角A的大小;(2)若BC2,求ABC面积S的最大值,并判断S取得最大值时ABC的形状18(本小题满分16分)在ABC中,cos A,cos B.(1)若AC3,求ABC的面积SABC;(2)若|,求AB的长19(本小题满分16分)已知三点A(cos ,sin ),B(cos ,sin ),C(cos ,sin ),若向量k(2k)0(k为常数且0k2),求cos()的最值及相应的k值20(本小题满分16分)在RtABC中,C90,以斜边AB所在的直线为轴将ABC旋转一周生成两个圆锥,设这两个

5、圆锥的侧面积之和为S1,ABC的内切圆面积为S2,记x.(1)求函数f(x)的解析式,并求f(x)的定义域;(2)求函数f(x)的最小值参考答案过关检测(二)1解析log2sinlog2coslog2log2log2log22.答案2解析因为是钝角,所以是锐角,cos 2cos21,所以cos,sin,tan2,所以tan3.答案33解析(73)732.答案24解析f(x)sin 2xsincos 2xcoscos,结合函数图象可知在上的单调递增区间为.答案5解析由mn,得mn0,所以4sin Bsin2cos 2B20,所以2sin Bcos 2B20,即2sin B2sin2B12sin2

6、B20,也即sin B,又因为0B,所以B或.答案或6解析由,得2,所以P为线段AC的一个三等分点同理可得Q与R的位置,所以PQR的面积为ABC的面积减去三个小三角形的面积,所以所求面积比为13.答案137解析由0知,点M为ABC的重心,设点D为底边BC的中点,则()(),所以有3,故m3.答案38解析由sin cos 2sin cos sin 2两边平方,得1sin 22sin22,解得sin 21或sin 2.又,所以sin 21,所以2或2,sin1或.答案1或9解析中,ysin4xcos4x(sin2xcos2x)(sin2xcos2x)cos 2x,故最小正周期是,故正确;中,终边在

7、y轴上的角的集合是,故不正确;中,在同一坐标系中,ysin x的图象和yx的图象只有一个公共点,故不正确;中,ysincos x,在0,上是增函数,故不正确;中,y3sin的图象向右平移,得到y3sin3sin 2x的图象,故正确答案10解析由得,取BC的中点D,则,即,所以A,P,D三点共线,又AD为中线,则动点P的轨迹一定通过ABC的重心答案重心11解析由等腰直角三角形ABC中,A90,AB,AD是BC边上的高,P为AD的中点知AD1,AP,又由知()(),化简得2(),又M,N关于直线AD对称,知|cos 135|cos 135,故AM,所以3.答案312解析以点C为原点,CB所在直线为

8、x轴,CA所在直线为y轴,建立如图所示直角坐标系,设P(x,y),则由题可知B(1,0),A(0,),N,M,所以,所以yy,直线AB的方程为xy0.由题可知由线性规划知识可知,当直线yz0过点A时有最小值,过点B时有最大值.答案13解析由(O),得|2()2|2|22,即2|2|2|21,所以|AB|2()2|2|221113,即|.同理|,所以ABC是正三角形答案正三角形14解析ysin 2.设xsin 2,由0,得0x1,于是转化为求函数yx(0x1)的最小值因为yx在(0,1上为减函数,所以ymin211.答案115解(1)因为ab,所以2sin cos ,所以tan .(2)因为ab

9、,所以sin cos 2即sin 2.因为,所以2,所以cos 2.所以sinsin 2cos cos 2sin.16解(1)|a|2x2m2,|b|2(m1)2x2x2,因为|a|b|,所以|a|2|b|2.从而x2m2(m1)2x2x2.因为m0,所以2x2,解得x或x.(2)ab(m1)x2mx.由题意,得(m1)x2mx1m对任意的实数x恒成立,即(m1)x2mxm10对任意的实数x恒成立当m10,即m1时,显然不成立,从而解得所以m.所以,m的取值范围为.17解(1)由mn,得sin A(sin Acos A),即sin2Asin Acos A,所以sin 2A,所以sin 2Aco

10、s 2A1,sin1.因为0A,所以2A,A.(2)由余弦定理,得a2b2c22bccosb2c2bc2bcbc,即bca24.所以SABCbcsin Abc ,当且仅当bc,即ABC是等边三角形时等号成立故S取得最大值时,ABC是等边三角形18解(1)因为cos A,cos B,A,B(0,),所以sin A,sin B.所以sin Csin(AB)sin(AB)sin Acos Bcos Asin B.又由正弦定理,得,所以BC5,所以SABCACBCsin C35.(2)由正弦定理,得,即,所以,设a5t,b3t,(t0)则由余弦定理,得AB2a2b22abcos C25t29t215t

11、219t2.又由|,得19()2222a2b22abcos C25t29t215t249t2,所以t2,所以AB219,所以AB.19解由已知移项,得两式平方相加,整理,得k2(2k)22k(2k)cos()1,所以cos()11,于是由0k2,得k1时,cos()取最大值.又因为1cos(),此时11且0k2,解得k.所以当k或时,cos()取最小值1.综上所述,当k1时,cos()取最大值;当k或时,cos()取最小值1.20解(1)设BCa,CAb,ABc,则斜边AB上的高为h,所以S1ahbh(ab),S22,所以f(x),又所以所以f(x).在RtABC中,有acsin A,bccos A,则xsin Acos Asin,所以x(1,(2)f(x)26,设tx1,则t(0,1,y26在(0,1上是减函数,故当x(1)1时,f(x)取最小值68.高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3