ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:102.50KB ,
资源ID:986303      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-986303-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((山东专用)2021新高考数学一轮复习 第五章 数列 课时作业35 数列求和(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(山东专用)2021新高考数学一轮复习 第五章 数列 课时作业35 数列求和(含解析).doc

1、课时作业35数列求和1已知等差数列an的公差d0,a36,且a1,a2,a4成等比数列(1)求an的通项公式;(2)设bn2an,求数列anbn的前n项和Sn.解:(1)根据题意,得即解得或(不合题意,舍去),所以ana1(n1)d22(n1)2n.(2)由(1)得bn2an22n4n,所以数列bn是首项为4,公比为4的等比数列所以Sn(a1a2a3an)(b1b2b3bn)n2n.2设数列an的前n项和为Sn,且S4120,an13an.(1)求数列an的通项公式;(2)设bnlog3a2n1,求数列的前n项和Tn.解:(1)S4120,an13an,an是公比q3的等比数列又S4120,解

2、得a13,an是以3为首项,以3为公比的等比数列,其通项公式为ana1qn13n.(2)bnlog332n12n1,Tn.3已知等差数列an的公差d0,若a3a922,且a5,a8,a13成等比数列(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解:(1)设数列an的首项为a1,依题意,解得a11,d2,数列an的通项公式为an2n1.(2)bn11,Sn111n.4已知等比数列an的前n项和为Sn,公比q1,且a21为a1,a3的等差中项,S314.(1)求数列an的通项公式;(2)记bnanlog2an,求数列bn的前n项和Tn.解:(1)由题意,得2(a21)a1a3

3、.又S3a1a2a314,2(a21)14a2,a24,S344q14,q2或q,q1,q2.ana2qn242n22n.(2)由(1),知an2n,bnanlog2an2nn.Tn121222323(n1)2n1n2n.2Tn122223324(n1)2nn2n1.Tn22223242nn2n1n2n1(1n)2n12.Tn(n1)2n12.5已知正项等比数列an的前n项和为Sn,满足S24S4S6,a11.(1)求数列an的公比q;(2)令bnan15,求T|b1|b2|b10|的值解:(1)an是正项等比数列,若q1,则Snna1n,S22,4S444,S66,不合题意,q1,从而Sn.

4、由S24S4S6可知4,(1q2)4(1q4)1q6,而q1,且q0,14(1q2)1q2q4,即q43q240,(q24)(q21)0,q2.(2)由(1)知an2n1,则an的前n项和Sn2n1.当n5时,bn2n1150,n4时,bn2n1150,T(b1b2b3b4)(b5b6b10)(a1a2a3a4154)(a5a6a10156)S4S10S46090S102S430(2101)2(241)3021025291 0243229963.6“垛积术”(隙积术)是由北宋科学家沈括在梦溪笔谈中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛

5、等某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件已知第一层货物单价是1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为(D)A7 B8C9 D.10解析:由题意知,茭草垛自上而下堆放的货物件数构成一个等差数列an,且ann,货物单价构成一个等比数列bn,且bnn1,所以每一层货物的总价为anbnnn1万元所以这堆货物的总价(单位:万元)为Sna1b1a2b2a3b3anbn,所以Sn11232(n1)n2nn1.两边同乘得Sn12233(n1)n1nn,两式相减得Sn123n1nn10(10n)n,所以Sn

6、10010(10n)n,由10010(10n)n100200n,整理得10(10n)200,解得n10.故选D.7(多填题)已知数列an的前n项和为Sn,满足Snan2bn(a,b为常数),且a9,则a1a17;设函数f(x)2sin2x2sin2,ynf(an),则数列yn的前17项和为17.解析:当n2时,anSnSn1an2bna(n1)2b(n1)2naab.又当n1时,a1S1ab,满足an2naab,所以an2naab,所以数列an为等差数列,故a1a172a9.由题意得f(x)sin2xcosx1,所以y1y17f(a1)f(a17)sin2a1cosa11sin2a17cosa

7、171sin2a1cosa11sin(22a1)cos(a1)12,同理,y2y162,y8y102.又易得y9f(a9)1,所以数列yn的前17项和为28117.8设an是等差数列,bn是等比数列,公比大于0.已知a1b13,b2a3,b34a23.(1)求an和bn的通项公式;(2)设数列cn满足cn求a1c1a2c2a2nc2n(nN*)解:(1)设等差数列an的公差为d,等比数列bn的公比为q.依题意,得解得或(舍)故an33(n1)3n,bn33n13n.所以,an的通项公式为an3n,bn的通项公式为bn3n.(2)a1c1a2c2a2nc2n(a1a3a5a2n1)(a2b1a4b2a6b3a2nbn)(631123218336n3n)3n26(131232n3n)记Tn131232n3n,则3Tn132233n3n1,得,2Tn332333nn3n1n3n1.所以,a1c1a2c2a2nc2n3n26Tn3n23(nN*)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3