ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:898KB ,
资源ID:984584      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-984584-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2013高考数学专题闯关教学课件:计数原理、二项式定理(共35张PPT).ppt)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2013高考数学专题闯关教学课件:计数原理、二项式定理(共35张PPT).ppt

1、数原理、二项式定理主干知识整合1分类计数原理和分步计数原理如果每种方法都能将规定的事件完成,则要用分类计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步计数原理将各步的方法种数相乘2排列与组合(1)排列:从n个不同元素中,任取m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列从n个不同元素中取出m个元素的排列数公式是高考热点讲练计数原理例例11有一个圆被两相交弦分成四块,现在用5种不同颜料给这4块涂色,要求共边两块颜色互异,每块只涂一色,共有多少种涂色办法?【归纳拓展】既有分类原理又有分步原理的问题,“先分类,再分步”是一个重要的计数原

2、则,在计数时应让两个原理协同作用在应用分类计数原理时,要注意“类”与“类”间的独立性与并列性;在应用分步计数原理时,要注意“步”与“步”间的连续性掌握好分类讨论的标准,设计好分类方案,防止重复和遗漏变式训练1甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()A150种B180种C300种D345种(1)某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A16 B18C24 D32排列与组合例例22(2)2010年上海世博会中,甲、乙等五名志愿者

3、被分配到中国馆、英国馆、澳大利亚馆、俄罗斯馆的四个不同的岗位服务,每个岗位至少一名志愿者,则甲、乙两人各自独立承担一个岗位工作的分法共有_种(用数字作答)【答案】(1)C(2)72【归纳拓展】解决排列、组合综合问题的关键是认真审题,把握问题的实质,分清是排列问题,是组合问题,还是综合问题,分清分类与分步的标准和方式,并且要遵循两个原则:(1)按事情发生的过程进行分步;(2)按元素的性质进行分类,具体地说,解排列组合的应用题,通常有以下途径:以元素为主体,即先满足特殊元素的要求,再考虑其他元素以位置为主体,即先满足特殊位置的要求,再考虑其他位置先不考虑附加条件,计算出排列或组合数,再减去不符合要

4、求的排列或组合数变式训练2(1)在“家电下乡”活动中,某厂准备从5名销售员和4名技术员中选出3人赴邻近镇开展家电促销活动,若要求销售员和技术员至少各一名,则不同的组合方案种数为()A140 B100C80 D70(2)形如45132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A20 B18C16 D11二项式定理例例33【答案】2考题解答技法例例【答案】5(1)二项展开式的通项Tk1中,项数与k的关系搞不清(2)二项式系数与各项的系数混淆不清(3)在展开二项式(ab)n时,忽略中间的“”号变式训练在(x2x1)(x1)5的展开式中,含x4项的系数是()A25 B5C5 D25

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1