收藏 分享(赏)

2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt

上传人:a**** 文档编号:982647 上传时间:2025-12-21 格式:PPT 页数:42 大小:2.73MB
下载 相关 举报
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第1页
第1页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第2页
第2页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第3页
第3页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第4页
第4页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第5页
第5页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第6页
第6页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第7页
第7页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第8页
第8页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第9页
第9页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第10页
第10页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第11页
第11页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第12页
第12页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第13页
第13页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第14页
第14页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第15页
第15页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第16页
第16页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第17页
第17页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第18页
第18页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第19页
第19页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第20页
第20页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第21页
第21页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第22页
第22页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第23页
第23页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第24页
第24页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第25页
第25页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第26页
第26页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第27页
第27页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第28页
第28页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第29页
第29页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第30页
第30页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第31页
第31页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第32页
第32页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第33页
第33页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第34页
第34页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第35页
第35页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第36页
第36页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第37页
第37页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第38页
第38页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第39页
第39页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第40页
第40页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第41页
第41页 / 共42页
2013版高中全程复习方略配套课件:4.4平面向量应用举例(数学文人教A版湖南专用).ppt_第42页
第42页 / 共42页
亲,该文档总共42页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第四节平面向量应用举例三年6考高考指数:1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.1.以向量为载体考查三角函数、解析几何等问题是考查重点,也是热点.2.以向量为工具解决平面几何问题是难点.3.三大题型均可能出现,客观题主要考查向量的基础知识,与三角函数、解析几何综合的题目主要以解答题形式出现,难度中档偏上.1.向量在平面几何中的应用(1)平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(2)用向量解决常见平面几何问题的技巧线平行、点共线、相似问题利用共线向量定理:ab

2、_垂直问题利用数量积的运算性质:_夹角问题利用夹角公式:cos=_(为的夹角)(3)用向量方法解决平面几何问题的“三步曲”平面几何问题向量问题解决向量问题解决几何问题【即时应用】判断下列命题是否正确?(请在括号中填写“”或“”)若 ,则三点A、B、C共线.()在ABC中,若则ABC为钝角三角形.()在四边形ABCD中,边AB与CD为对边,若则此四边形为平行四边形.()【解析】因共始点A,且 ,故正确;00,B为锐角,不能判断ABC的形状,故不正确;,AB DC,故正确.答案:2.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成和向量的加法和减法相似,可以用向量

3、的知识来解决.(2)物理学中的功是一个标量,是力F与位移s的数量积.即(为F与s的夹角).【即时应用】(1)已知两个力的夹角为90,它们的合力F的大小为10N,合力与F1的夹角为60,那么F1的大小为_.(2)已知a=(cosx,sinx),b=(cosx,-sinx),则函数y=的最小正周期为_.(3)如图,已知两个力的大小和方向,则合力的大小为_N;若在图示坐标系中,用坐标表示合力,则合力的坐标为_.【解析】(1)如图所示.(2)T=.(3)合力=(2,3)+(3,1)=(5,4),合力的大小为答案:(1)5N (2)(3)(5,4)向量在平面几何中的应用【方法点睛】平面几何问题的向量解法

4、平面向量在平面几何中的应用主要体现在:利用可以求线段的长度,利用cos=(为a与b的夹角)可以求角,利用可以证明垂直,利用可以判定平行等.【提醒】向量关系与几何关系并不完全相同,要注意区别,例如:向量 并不能说明直线ABCD.【例1】(2011天津高考)已知直角梯形ABCD中,ADBC,ADC=90,AD=2,BC=1,P是腰DC上的动点,则的最小值为_.【解题指南】以直角顶点为原点建立平面直角坐标系,用参数表示出点P、C、B、A的坐标,进而表示出,然后转化为函数问题求解.【规范解答】建立平面直角坐标系如图所示.设P(0,y),C(0,b),则B(1,b),A(2,0),则=(2,-y)+3(

5、1,b-y)=(5,3b-4y).=25+(3b-4y)2(0yb),当y=b时,最小,=5.答案:5【反思感悟】平面几何问题的向量解法(1)坐标法把几何图形放在适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量共线构造关于设定未知量的方程来进行求解.向量在三角函数中的应用【方法点睛】平面向量与三角函数的综合问题的命题形式与解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,

6、要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【例2】(1)已知向量则函数的值域为_.(2)在ABC中,角A、B、C所对的边分别为a、b、c,向量p=(1-sinA,),q=(cos2A,2sinA),且pq.求sinA的值;若b=2,ABC的面积为3,求a.【解题指南】(1)利用向量的基本运算写出关于x的函数,然后求出值域.(2)利用pq列出关于sinA的方程;由sinA,b及SABC=bcsinA可求出c,再由余弦定理求a.【规范解答】(1)=x0,,g(x)0,2.答案:0,2(2)pq,cos2A=(1-sinA)2sin

7、A,6(1-2sin2A)=7sinA(1-sinA),5sin2A+7sinA-6=0,sinA=.(sinA=-2舍)由SABC=bcsinA=3,b=2,得c=5,又a2=b2+c2-2bccosA=4+25-225cosA=29-20cosA,当cosA=时,a2=13,a=;当cosA=时,a2=45,a=.【反思感悟】1.该类题的解题关键把向量关系转化为向量的运算,再进一步转化为纯三角函数的运算,即该类题的解题关键是“转化思想方法的应用”.2.向量在该类题中的作用向量作为载体,通过向量间的平行、垂直关系转化为三角函数运算.平面向量在解析几何中的应用【方法点睛】向量在解析几何中的作用

8、(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用 可解决垂直、平行问题,特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.【例3】已知两点M(-1,0),N(1,0),且点P使成公差非负的等差数列.(1)求点P的轨迹方程;(2)若为与的夹角,求的最大值及此时点P的坐标.【解题指南】(1)设P(x,y),直接求点P的轨迹方程;(2)先求出cos的范围,再求的最大值.【规范解答】(1)设点P坐标为

9、(x,y),则=(-1-x,-y),依题意得,点P的轨迹方程为x2+y2=3(x0).(2)=(-1-x,-y)(1-x,-y)=x2+y2-1=2,0 x ,cos1,0 .的最大值为,此时x=0,点P的坐标为(0,).【反思感悟】1.向量法解决平面解析几何问题的关键是把点的坐标转换成向量的坐标,然后进行向量的运算.2.相等向量、共线向量、垂直向量的坐标形式经常用到,必须熟练掌握.【易错误区】忽视对直角位置的讨论致误【典例】(2012烟台模拟)已知平面上三点A、B、C,=(2-k,3),=(2,4).(1)若三点A、B、C不能构成三角形,求实数k应满足的条件;(2)若ABC为直角三角形,求k

10、的值.【解题指南】(1)三点A、B、C不能构成三角形,即A、B、C三点共线.(2)对A、B、C谁为直角顶点进行分类讨论.【规范解答】(1)由三点A、B、C不能构成三角形,得A、B、C在同一直线上,即向量与平行,,4(2-k)-23=0,解得k=.(2)=(2-k,3),=(k-2,-3),=(k,1).ABC为直角三角形,则当BAC是直角时,,即2k+4=0,解得k=-2;当ABC是直角时,即k2-2k-3=0,解得k=3或k=-1;当ACB是直角时,即16-2k=0,解得k=8.综上得k-2,-1,3,8.【阅卷人点拨】通过阅卷数据分析与总结,我们可以得到如下误区警示和备考建议:误区警示解答

11、本题易出现以下两个错误:(1)由于思维定势误认为第(2)问中的A一定是直角,从而使解答不完整.(2)混淆向量坐标运算中垂直与平行的充要条件导致错误.备考建议建议在学习平面向量的应用时,要高度关注:(1)加强向量的应用意识,自觉地用向量的思想和方法去思考问题,考虑问题要全面.(2)要熟记向量运算中的常用公式,如向量平行或垂直的坐标运算等.1.(2012合肥模拟)设ABC的三个内角A,B,C,向量若=1+cos(A+B),则C=()(A)(B)(C)(D)【解析】选C.(sinAcosB+cosAsinB)=sin(A+B)=sinC,sinC=1+cos(A+B)=1-cosC,sinC+cos

12、C=1,C(0,),2.(2012黄冈模拟)已知A为平面直角坐标系内一点,O为原点,a=(2,1),且a ,a =10,则|=_.【解析】设A(x,y),则=(x,y),由题意得答案:3.(2012长沙模拟)已知向量a=(2cos ,1),b=(cos ,3cosx).(1)当ab时,求cos2x-sin2x的值;(2)设函数f(x)=(a-b)a,在ABC中,角A、B、C所对的边分别为a、b、c,且f(A)=4,a=,求ABC的面积S的最大值.【解析】(1)ab,2cos cos +3cosx=0,-sinx+3cosx=0,cosx0,tanx=3,cos2x-sin2x=(2)f(x)=(2cos +sin ,1-3cosx)(2cos ,1)=4cos2 +sinx+1-3cosx=sinx-cosx+3=sin(x-)+3.f(A)=sin(A-)+3=4,sin(A-)=又因为A(0,),A-(),A-=,A=.于是在ABC中,b2+c2=a2=10,S=bc 当且仅当b=c=时等号成立,ABC的面积的最大值为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1