收藏 分享(赏)

2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt

上传人:a**** 文档编号:970118 上传时间:2025-12-20 格式:PPT 页数:26 大小:796KB
下载 相关 举报
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第1页
第1页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第2页
第2页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第3页
第3页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第4页
第4页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第5页
第5页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第6页
第6页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第7页
第7页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第8页
第8页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第9页
第9页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第10页
第10页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第11页
第11页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第12页
第12页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第13页
第13页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第14页
第14页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第15页
第15页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第16页
第16页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第17页
第17页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第18页
第18页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第19页
第19页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第20页
第20页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第21页
第21页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第22页
第22页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第23页
第23页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第24页
第24页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第25页
第25页 / 共26页
2012高考总复习数学文科新人教A版课件第3单元 第7节 正弦定理和余弦定理.ppt_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第七节 正弦定理和余弦定理定理正弦定理余弦定理内容_=_=_=2Ra2=_b2=_ c2=_变形形式a=_b=_c=_sin A=_ sin B=_ sin C=_abc=_cos A=_cos B=_cos C=_解决的问题已知_,求_已知_,求_已知_,求_已知_,求_1.正弦定理和余弦定理(R为ABC的外接圆半径)b2+c2-2bccos Aa2+c2-2accos Ba2+b2-2abcos C2Rsin A2Rsin B2Rsin Csin Asin Bsin C两角和任一边另一角和其他两条边两边和其中一边的对角另一边和其他两角三边各角两边和它们的夹角第三边和其他两个角 基础梳理A为

2、锐角A为钝角或直角图象关系式absin Aa=bsin Absin Aabab解的个数2.在ABC中,已知a,b和A时,解的情况如下:无解无解一解两解一解一解3.三角形常用面积公式(1)S=ah(h表示三角形长为a的边上的高)(2)S=_=_=_.(3)S=r(a+b+c)(r为三角形的内切圆半径)(4)S=acsin Bbcsin Aabsin C基础达标1.(教材改编题)已知在ABC中,a=,b=,B=60,那么角A等于()A.135B.90C.45D.30C解析:由正弦定理=,得=,可得sin A=.又ab,AB,A=45.2.已知在ABC中,角A、B所对的边分别是a和b,若acos B

3、=bcos A,则ABC一定是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形解析:由正弦定理得:acos B=bcos A2Rsin AcosB=2Rsin Bcos Asin(A-B)=0,由于-pA-Bp,故必有A-B=0,即三角形为等腰三角形A3.(教材改编题)ABC的边分别为a、b、c,且a=1,c=4,B=45,则ABC的面积为()A.4 B.5 C.2 D.6解析:SABC=acsin B=1 4 sin 45=2C4.在ABC中,若sin C=2cos Asin B,则此三角形必是()A.等腰三角形B.正三角形C.直角三角形D.有一角为30的直角三角形解析:

4、由sin C=2cos Asin B,得sin(A+B)=2cos Asin B,即sin Acos B+cos Asin B=2cos Asin B,即sin Acos B-cosAsin B=0,所以sin(A-B)=0.又因为-pA-Bcb,角A为最大角由余弦定理有cos A=-,A=120,sin A=,再根据正弦定理,有=,sin C=sin A=.题型二 判断三角形的形状【例2】(2010辽宁)在ABC中,a、b、c分别为内角A、B、C的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.(1)求角A的大小;(2)若sin B+sin C=1,试判断ABC的形状

5、分析:(1)用正、余弦定理求A.(2)利用已知条件进行变形求解解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bccos A,故cos A=-,即A=120.(2)由(1)得sin2A=sin2B+sin2C+sin Bsin C又sin B+sin C=1,即(sin B+sin C)2=sin2B+sin2C+2sin Bsin C=1,两式联立得sin Bsin C=,则sin B,sin C是方程x2-x+=0的两根,解得sin B=sin C=.因为0B90,0C90,故B=C=.所以ABC是等腰的钝角

6、三角形变式2-1在ABC中,已知2a=b+c,sin2A=sin Bsin C,试判断ABC的形状解:由正弦定理=2R,得sin A=,sin B=,sin C=.所以由sin2A=sin Bsin C可得2=,即a2=bc.又已知2a=b+c,所以4a2=(b+c)2,所以4bc=(b+c)2,即(b-c)2=0,所以b=c,故由2a=b+c得2a=b+b=2b,即a=b,所以a=b=c,即ABC为等边三角形题型三 正余弦定理及面积公式的应用【例3】在ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=.(1)若ABC的面积等于,求a,b;(2)若sin B=2sin A,求

7、ABC的面积分析:(1)利用余弦定理和三角形面积公式联立可求;(2)首先将角的关系转变成边的关系,然后利用余弦定理和面积公式进行求解解:(1)由余弦定理得a2+b2-ab=4.又因为ABC的面积等于,所以absin C=,得ab=4.联立方程组解得(2)由正弦定理,已知条件可化为b=2a,联立方程组解得所以ABC的面积S=absin C=.变式3-1(2011皖南八校联考)已知ABC的周长为+1,且sin A+sin B=sin C.(1)求边AB的长;(2)若ABC的面积为sin C,求角C的度数解:(1)由题意及正弦定理,得AB+BC+AC=+1,BC+AC=AB,两式相减,得AB=1.(

8、2)由ABC的面积 BCACsin C=sin C,得BCAC=.由余弦定理得,cos C=,所以C=60.题型四 正、余弦定理的综合应用【例4】ABC中,角A,B,C的对边分别为a,b,c,且b2+c2-a2+bc=0.(1)求角A的大小;(2)若a=,求bc的最大值分析:(1)由b2+c2-a2+bc=0的结构形式,可联想余弦定理,求出cos A,进而求出A的值(2)由a=及b2+c2-a2+bc=0,可求出关于b,c的关系式,利用不等式即可求出bc的最大值解(1)cos A=-,A=120.(2)由a=,得b2+c2=3-bc.又b2+c22bc(当且仅当c=b时取等号),3-bc2bc

9、(当且仅当c=b时取等号),即当且仅当c=b=1时,bc取得最大值为1.变式4-1(2011杭州学军中学月考)在ABC中,角A,B,C的对边分别为a,b,c,且bcos C=3acos B-ccosB求cos B的值解:由正弦定理得a=2Rsin A,b=2Rsin B,c=2Rsin C,则2Rsin Bcos C=6Rsin Acos B-2Rsin Ccos B,故sin Bcos C=3sin Acos B-sin Ccos B,可得sin Bcos C+sin Ccos B=3sin Acos B即sin(B+C)=3sin Acos B,可得sin A=3sin Acos B又si

10、n A0,因此cos B=.【例】在ABC中,角A、B、C所对的边分别为a、b、c,且a=1,c=.(1)若角C=,则角A=_.(2)若角A=,则b=_.错解(1)或 p(2)2正解:(1)由正弦定理=,得sin A=,又ac,所以AC,所以A=.(2)由=,得sin C=,解得C=或,当C=时,B=,可得b=2;当C=时,B=,此时b=1.1.(2010山东)ABC中,角A,B,C所对的边分别为a,b,c,若a=,b=2,sinB+cosB=,则角A的大小为_知识准备:1.掌握sin x+cos x=sin ;2.已知sin x的值和x的取值范围,能求出x的值;3.会利用正弦定理=,知三求一,并能利用相关知识对解的情况做出判断,如ABC中大边对大角链接高考解析:sin B+cos B=sin(+B)=,sin =1.又0Bp,B=.由正弦定理,得sin A=.又ab,A0,a=5.解析:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1