1、第一章4.24.4.2.3第2课时请同学们认真完成 练案5A级基础巩固一、选择题1当a0且a1,x0,y0,nN*时,下列各式不恒成立的是(C)AlogaxnnlogaxBlogaxnlogaCxlogaxxDlogaxnlogaynn(logaxlogay)解析要使式子xlogaxx恒成立,必须logax1,即ax时恒成立2若lg xlg ya,则lg ()3lg ()3等于(D)ABaCD3a解析lg ()3lg ()33(lg xlg 2)3(lg ylg 2)3(lg xlg y)3A3方程2log3x的解是(C)ABCD9解析2log3x22,log3x2,x324(多选题)已知x,
2、y为正实数,则(CD)A2ln xln y2ln x2ln yB2ln(xy)2ln x2ln yC2ln xln y(2ln x)ln yD2ln(xy)2ln x2ln y解析根据指数与对数的运算性质可得2ln xln y(2ln x)ln y,2ln(xy)2ln xln y2ln x2ln y,可知C、D正确,而A、B都不正确5若log5log36log6x2,则x(D)A9BC25D解析log5log36log6x2,2,lg x2lg 5lg 52,x二、填空题6计算:2log210log20.08的值为_3_解析2log210log20.08log2100log20.08log2
3、(1000.08)log2837已知lg 2a,lg 3b,用a、b表示log125_解析log1258已知x0,y0,若2x8y16,则x3y_4_,则21log2xlog927y_2_解析因为2x8y16,所以2x23y2x3y24,所以x3y421log2xlog927y212log2xlog3233y2三、解答题9(1)计算:(log2125log425log85)(log52log254log1258);(2)已知log23a,log37b,用a,b表示log1456解析(1)原式()()()()13(2)log23a,log37b,ablg 7ablg 2log145610(1)设
4、loga2m,loga3n,求a2mn的值;(2)设xlog23,求的值解析(1)loga2m,loga3n,a2mna2man(am)2an(aloga2)2aloga34312(2)2x2x2log23(2log23)13B级素养提升一、选择题1若tlog32,则log382log36可用t表示为(B)At2Bt2C2t1D2t1解析log382log36log38log336log3log322t22已知函数f(x),则f(log27)(C)ABCD解析因为log271,所以f(log27)f(log271)f(log2)f(log21)f(log2)而log21,所以f(log2)2l
5、og23已知log72p,log75q,则lg 5用p、q表示为(B)ApqBCD解析pqlog72log75log710,qlog75,lg 7lg 54设2a5bm,且2,则m(A)AB10C20D100解析2a5bm,alog2m,blog5m,logm2logm5logm102,m.故选A二、填空题5._1_解析16若mlog351,n5m,则n的值为_3_解析mlog351,mlog53n5m5log5337已知logab3logba,则logab_6或_,当ab1时,的值为_1_解析因为logab3logba,所以logab,所以2(logab)213logab60,解得logab6或,因为ab1,所以0logab1,所以logab,所以b,所以1三、解答题8求下列各式的值:(1)(lg 5)22lg 2(lg 2)2;(2)log2(1)log2(1);(3)lg ()解析(1)原式(lg 5lg 2)(lg 5lg 2)2lg 2lg 5lg 21(2)原式log2(1)(1)log2(1)23log22(3)原式lg ()2lg 62lg 109已知2x3y6z1.求证:解析设2x3y6zk(k1),xlog2k,ylog3k,zlog6klogk2,logk3,logk6logk2logk3