1、 等差数列(第一课时)教学设计一、教材分析(一)本节课主要研究等差数列的概念、通项公式及其应用,是本章的重点内容之一。而所处章节数列又是高中数学的重要内容,并且在实际生活中有着广泛的应用,它起着承前启后的作用。(二)并且数列与前面学习的函数等知识有密切的联系,学习数列又为进一步学习数列的极限等内容作好了准备。同时也是培养学生数学能力的良好题材。学习数列要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。二、学情分析(一)认知结构 在学习等差数列之前,同学们已经学习了数列的概念
2、,明白了什么是数列的通项公式,什么是递推公式。并且也已经初步接触了研究数列的方法,如猜想归纳、迭代累加等,在有了函数的基础知识之上,等差数列的应用就变得比较易懂具体。(二)情感结构 等差数列是研究特殊数列的开始,一个好的开始是非常重要的。所以在教学设计中应该多角度体现研究数列的方法,增加学生对数列的兴趣,减少枯燥死板的概念学习惯性。并且随着年龄的增大,阅历的丰富,高中学生自主意识的增强,有独立思考问题、发现问题的能力.故在学生的探索活动中,主动通过设疑、质疑、提示等启发示手段,帮助他们分析问题,激发学生的学习的兴趣.三、教学目标(一)知识与技能目标 1.理解等差数列的定义及等差中项的定义 2.
3、 掌握等差数列的通项公式及推广后的通项公式 3.灵活运用等差数列,熟练掌握知三求一的解题技巧(二) 过程与方法目标 1.培养学生观察能力 2.进一步提高学生推理、归纳能力 3.培养学生合作探究的能力,灵活应用知识的能力(三)情感态度与价值观目标 1.体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神; 2.渗透函数、方程、化归的数学思想; 3.培养学生数学的应用意识,参与意识和创新意识。四、教学重难点(一)重点1、等差数列概念的理解与掌握; 2、等差数列通项公式的推导与应用。 (二)难点 1、等差数列的应用及其证明五、教学过程(一) 背景问题,创设情景 上节课我们共同学习了数列的
4、定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映了数列的特点。下面请同学们观察两个表格的数据并进行填空。思考问题(一):在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,请问你能预测出下次人类观测哈雷彗星的时间吗?1682,1758,1834,1910,1986,( 2062 )特点:后一次观测时间比前一次观测时间增加了76年我们把这些数据写成数列的形式:1682,1758,1834,1910,1986,2062.思考问题(二):通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表填写处空格处的信息吗?高度h(km)1234567
5、.9温度t()2821.5158.52(-4.5)(-11).(-24)特点:高度每增加一千米,温度就降低6.5度。我们把表格中的数据写成数列的形式:28, 21.5, 15, 8.5, 2, , -24.学生活动(1):学生观察下列三个数列具有怎样的共同特征:(1)1682,1758,1834,1910,1986,2062.(2)28, 21.5, 15, 8.5, 2, , -24.(3)1,1,1,1,1,1,1,1,1,1.共同特征:1.后一项与它的前一项的差等于一个定常数。 2.这个常数可以为正为负,还可以为零。(二) 新知概念,例题讲解1. 等差数列的定义: 如果一个数列从第2项起
6、,它的每一项与它的前一项的差都等于同一个常数,那么我们就称这个数列为等差数列.要点:(1)从第二项起; (2) (3)同一常数c。2.公差:这个常数叫做等差数列的公差,公差通常用 “d ”来表示.请同学们大声说出上例三个等差数列的公差为多少(1) d=76 (2)d=-6.5 (3)d=0例1.下列数列是等差数列吗?为什么?(1) 1, 3, 5, 7, 9, 2, 4, 6, 8, 10.(2) 5,5,5,5,5,5,(3) 4,7,10,13,16,19,20,23.例2.数列3n-5是等差数列吗?如果是,请给以证明;如果不是,请说明理由。3. 等差数列的通项公式学生活动(2): 你能根
7、据规律填空吗?(1)1,4,7,10,13,16,( ),( )(2) 你能求出(1)中的吗?答案:等差数列通项公式的推导过程:探索、猜想、证明如果一个数列老师引导过程: 即: 即: 即: 由此可得: (n2)当n=1时,等式也是成立,因而等差数列的通项公式 (nN*)学生活动(3): 请同学们思考:你还能找到证明等差数列通项公式的方法吗? 同学(一): 教师小结:大部分学生用不完全归纳法,通过个别同学补充叠加法与拆项法,从而得到等差数列 的通项公式为: (n2),其中a1 是这个数列的首项, d 是公差。4. 例题讲解(1) 类型:在等差数列通项公式中,有四个量, 知道其中的任意三个量,就可
8、以求出另一个量,即知三求一 .(2) 等差数列的函数意义:等差数列由一次函数中某些特殊的点组成。(详见ppt)趁热打铁练一练:活动问题:等差数列中a1 =1,d=2,数列的通项公式是什么?(an=2n-1) 那么要求等差数列的通项公式只需求什么?(a1和d)学生活动(4): 同学自己编出已知等差数列的首项和公差求通项公式的问题并解决。 通过学生自己亲自尝试、体验,才能深刻理解等差数列的定义及通项公式,对学困生来讲,这样才能打好基础,这样安排即符合教学论中的巩固性原则,也符合素质教育理论中面向全体的基本要求。例3:求等差数列8,5,2的第20项。导析:由a1=8,d=5-8=-3,n=20得,a
9、20=8+(20-1)(-3)=-49例4.-401是不是等差数列-5,-9,-13的项?如果是,是第几项?导析:由得数列通项公式为:=-4n-1由题意可知,本题是要回答是否存在正整数n,使得-401=-4n-1成立,解之得n=100,即-401是这个数列的第100项。变式训练:如果已知等差数列中任意两项,能不能求出an呢? 学生:举例:在等差数列an中,已知a5=10,a12=31,求an 。 解: a1 +4d=10 a1 +11d=31解得 a1=-2 ,d=3,则an=3n-5教师:此解法是利用数学的函数与方程的思想,函数与方程的思想是重要的数学思想方法之一,应熟练掌握。问:由a5=a
10、1 +4d ,a12=a1 +11d能够有什么启示?生:a12=a1 +11d=a5+(12-5)d,于是有an=am+(n-m)d,(等差数列通项公式的推广公式)上题可先求出d=3,那么an= a5+(n-5)d= a12+(n-12)d=3n-5例5. 在等差数列an中(1) 解:由等差数列推广的通项公式得: (2) 解: (3) 解: (三)形成检测,反馈回授1、 求等差数列3,7,11,的第4项与第10项。2、100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由。3、-20是不是等差数列0, -3.5, -7,的项?如果是,是第几项?如果不是,说明理由。4、 已
11、知a4=10,a7=19,求a1与d。5、已知a3=9,a9=3,求a12 (四)课时小结,反思巩固学生活动5:这节课你们学到了什么?教师鼓励学生积极回答,答不完整的没有关系,其它同学补充。以此培养学生的口头表达能力,归纳概括能力。并用多媒体把学生的归纳用一张表展示出来。生:(1)等差数列定义:即(n2) 或an+1- an = d (nN*) (2)等差数列通项公式 :(nN*) 推导出公式: (3)等差数列通项公式的应用:知三求一(五) 知识延伸,作业布置思考题:第15届现代奥运会于1952年在芬兰赫尔辛基举行,每4年举行一次。奥运会如因故不能举行,届数照算。(1)试写出由举行奥运会的年份构成的数列的通项公式。(2)2008年北京奥运会是第几届?(3)2050年举行奥运会吗?作业: 习题1、2、3、4六:板书设计等差数列一、定义1(n2)二、 通项公式1公式推导过程例题讲解