1、北师大版八年级数学上册第一章勾股定理同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九章算术是我国古代数学名著,记载着这样一个问题:“今有池方一丈,葭生其中央,出水一尺引葭赴岸,适与岸齐问水深、葭
2、长各几何?”大意是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水的深度与这根芦苇的长度分别是多少?设芦苇的长度为x尺,则可列方程为()Ax2+52(x+1)2Bx2+102(x+1)2Cx252(x1)2Dx2102(x1)22、如图,将ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么ABC中BC边上的高是()ABCD3、有一个直角三角形的两边长分别为3和4,则第三边的长为()A5BCD5或4、勾股定理是人类最伟大的科学发现之一,在我国古算书周髀
3、算经中早有记载如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A直角三角形的面积B最大正方形的面积C较小两个正方形重叠部分的面积D最大正方形与直角三角形的面积和5、九章算术被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小以锯锯之,深一寸,锯道长一尺问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深等于1寸,锯道长1尺,则圆形木材的直径是()(1尺=10寸)A12寸B13寸C24寸D26寸6、如图,在ABC中,AB6,AC9,ADB
4、C于D,M为AD上任一点,则MC2MB2等于()A29B32C36D457、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,158、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D69、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A160B150C140D13010、如图,ABC中,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道()A以BC为边的正方形面积
5、B以AC为边的正方形面积C以AB为边的正方形面积DABC的面积第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在高2米,坡角为30的楼梯表面铺地毯,地毯的长至少需_米2、如图所示,在ABC中,B=90,AB=3,AC=5,将ABC折叠,使点C与点A重合,折痕为DE,则ABE的周长为 3、如图,在正方形网格中,点A,B,C,D,E是格点,则ABDCBE的度数为_4、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长5、如图,在中,于点DE为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称
6、点落在CD的延长线上若,则的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图所示,ABC的两条高AD,BE相交于点F,AC=BC(1)求证:ADCBEC(2)若CD=1,BE=2,求线段AC的长.2、在ABC中,AB5cm,AC3cm,动点P从点B出发,沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当ABP为直角三角形时,求t的值3、如图,已知等腰ABC的底边BC=10cm,D是腰AC上一点,且CD=6cm,BD=8cm(1)判断BCD的形状,并说明理由;(2)求ABC的周长4、如图,点是正方形内一点,将绕点顺时针旋转到的位置,若,求的度数5、如图,有一架秋千,当他静止时
7、,踏板离地的垂直高度,将他往前推送(水平距离)时,秋千的踏板离地的垂直高度,秋千的绳索始终拉得很直,求绳索的长度-参考答案-一、单选题1、C【解析】【分析】首先设芦苇长x尺,则水深为(x1)尺,根据勾股定理可得方程(x1)252x2【详解】解:设芦苇长x尺,由题意得:(x1)252x2,即x252(x1)2故选:C【考点】此题主要考查了勾股定理的应用,解题的关键是读懂题意,从题中抽象出勾股定理这一数学模型2、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:, ,即A
8、BC是直角三角形,设BC边上的高为h,则,.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.3、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可【详解】解:当4是直角边时,斜边=5;当4是斜边时,另一条直角边=;故选:D【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c24、C【解析】【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边
9、为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2-b2-a(c-b)=a2-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c25、D【解析】【分析】连接OA、OC,由垂径定理得ACBCAB5寸,连接OA,设圆的半径为x寸,再在RtOAC中,由勾股定理列出方程,解方程可得半径,进而直径可求【详解】解:连接OA、OC,如图:由题意得:
10、C为AB的中点,则O、C、D三点共线,OCAB,ACBCAB5(寸),设圆的半径为x寸,则OC(x1)寸在RtOAC中,由勾股定理得:52+(x1)2x2,解得:x13圆材直径为21326(寸)故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键6、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD
11、2MD2AB2AD2MD2,MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握7、B【解析】【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可【详解】解:A、32+42=52,故是直角三角形,不符合题意;B、42+5262,故不是直角三角形,符合题意;C、62+82=102,故是直角三角形,不符合题意;D、92+122=152,故是直角三角形
12、,不符合题意;故选:B【考点】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形8、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键9、A【解析】【分析】作点A关于直线
13、MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系10、D【
14、解析】【分析】如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,证明ADECAN得到,AE=CN同理可证BGHCBN,得到,BH=CN,则,即可推出由此即可得到答案【详解】解:如图所示,过点C作CNAB于N,延长AB、BA分别交正方形两边于H、E,CNA=DEA=DAC=90,DAE+EDA=DAE+CAN=90,ADE=CAN,又AD=CA,ADECAN(AAS),AE=CN同理可证BGHCBN,BH=CN, ,只需要知道ABC的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形二、填空
15、题1、2+2【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC)【详解】在RtABC中,A=30,BC=2m,C=90,AB=2BC=4m,AC=m,AC+BC=2+2(m).故答案为2+2.【考点】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.2、7【解析】【分析】根据勾股定理求得BC,再根据折叠性质得到AE=CE,进而由三角形的周长=AB+BC求解即可【详解】在ABC中,B=90,AB=3,AC=5,BC=.ADE是CDE翻折而成,AE=CE,AE+BE=BC=4,ABE的周长=AB+BC
16、=3+4=7故答案是:7【考点】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键3、45【解析】【分析】取网格点M、N、F,连接AM、AN、BM、MF、BN,根据网格线可得到ABD+CBE=MAB,再根据勾股定理的逆定理证明ABM是直角三角形,且AM=BM,即可得解【详解】取网格点M、N、F,连接AM、AN、BM、MF、BN,如图,根据网格线可知NB=1=MF,AN=3,AF=2,由网格图可知CBE=FAM,ABD=NAB,则ABD+CBE=MAB,在RtANB中,有,同理可求得:,ABM是直角三角形,且AM=BM,MAB=45,即:ABD+CBE=45,故答案为:45【考点】本题考查
17、了勾股定理即勾股定理的逆定理、等腰直角三角形等知识,求得ABD+CBE=MAB是解答本题的关键4、20m【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理【详解】将圆柱表面按一周半开展开呈长方形,圆柱高16m,底面周长8m,设螺旋形登梯长为xm,x2=(18+4)2+162=400, 登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键5、【解析】【分析】在ABC中由等面积求出,进而得到,
18、设BE=x,进而DE=DB-BE=,最后在中使用勾股定理求出x即可求解【详解】解:在中由勾股定理可知:,在中由勾股定理可知:,设BE=x,由折叠可知:BE=BE,且DE=DB-BE=,在中由勾股定理可知:,代入数据:,解得,故答案为:【考点】本题考查了勾股定理求线段长、折叠的性质等,解题的关键是掌握折叠的性质,熟练使用勾股定理求线段长三、解答题1、 (1)见解析(2)【解析】【分析】(1)由ADBC,BEAC得BEC=ADC=90,可证DAC=CBE,根据AAS可证ADCBEC;(2)由ADCBEC,得CD=CE=1,根据勾股定理可求(1)证明:ADBC,BEAC,BEC=ADC=90C+DA
19、C=90=C+CBE,DAC=CBE在ADC和BEC中, ADCBEC(AAS);(2)解:ADCBEC,CD=CE=1,BC= ,AC=BC=【考点】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键2、当ABP为直角三角形时,t4或【解析】【分析】当ABP为直角三角形时,分两种情况:当APB为直角时,当BAP为直角时,分别求出此时t的值即可【详解】在RtABC中,由勾股定理得:,BC4cm,由题意得:BPtcm,当APB为直角时,如图,点P与点C重合,BPBC4cm,t4;当BAP为直角时,如图,BPtcmCP(t4)cm,AC3cm,在RtACP中,在
20、RtBAP中,即,解得,答:当ABP为直角三角形时,t4或【考点】本题考查了勾股定理以及直角三角形的知识,解答本题的关键是掌握勾股定理的应用,以及分类讨论,否则会出现漏解3、 (1)BDC为直角三角形,理由见解析;(2)ABC的周长为=cm【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以BDC为直角三角形;(2)由此可求出AC的长,周长即可求出(1)解:BDC为直角三角形,理由如下,BC=10cm,CD=8cm,BD=6cm,而102=62+82,BC2=BD2+CD2BDC为直角三角形;(2)解:设AB=xcm,等腰ABC,AB=AC=x,
21、则AD=x-6,AB2=AD2+BD2,即x2=(x-6)2+82,x=,ABC的周长=2AB+BC=(cm)【考点】本题考查了勾股定理的逆定理,关键是根据等腰三角形的性质、勾股定理以及逆定理的应用解答4、【解析】【分析】连接EE,如图,根据旋转的性质得BE=B E=2,AE=C E=1,EBE=90,则可判断BEE为等腰直角三角形,根据等腰直角三角形的性质得EE= BE=2,BEE=45,在CE E中,由于CE +E E=CE,根据勾股定理的逆定理得到CEE为直角三角形,即EEC=90,然后利用B EC=B EE+C EE求解【详解】连接EE,如图,ABE绕点B顺时针旋转90得到CBEBE=
22、BE=2,AE=CE=1,EB E=90BE E为等腰直角三角形E E=BE=2,BEE=45在CEE中,CE=3,C E=1,EE=2,1+ (2)=3CE+E E= CECE E为直角三角形E EC=90B EC=B EE+C EE=135【考点】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键5、【解析】【分析】设秋千的绳索长为,则,利用勾股定理得,再解方程即可得出答案【详解】解:设秋千的绳索长为,则,在中,即,解得,答:绳索的长度是【考点】此题主要考查了勾股定理的应用,关键是正确理解题意,表示出AC、AB的长,掌握直角三角形中两直角边的平方和等于斜边的平方