1、七年级数学上册第三章整式及其加减同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则的值等于()A5B1C-1D-52、生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型在营养和生存
2、空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示即:212,224,238,2416,2532,请你推算22022的个位数字是()A8B6C4D23、化简的结果是()ABCD4、下列关于多项式2a2b+ab-1的说法中,正确的是()A次数是5B二次项系数是0C最高次项是2a2bD常数项是15、对于有理数,定义,则() () 化简后得()ABCD6、如图是一张长方形的拼图卡片,它被分割成4个大小不同的正方形和一个长方形,若要计算整张卡片的周长,则只需知道其中一个正方形的边长即可,这个正方形的编号是()ABCD7、观察下面一列有序数对:(1,1),(1,2),(2,1
3、),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),按这些规律,第50个有序数对是()A(3,8)B(4,7)C(5,6)D(6,5)8、整式的值()A与x、y、z的值都有关B只与x的值有关C只与x、y的值有关D与x、y、z的值都无关9、下列各组中的两项,不是同类项的是()A-x2y和2x2yB23和32C-m3n2与m2n3D2R与2R10、下列说法中正确的是()A是单项式B是单项式C的系数为-2D的次数是3第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、单项式的次数_.2、若单项式与是同类项,则_3、如将看
4、成一个整体,则化简多项式_4、已知整数a1,a2,a3,a4,满足下列条件:a10,a2|a1+1|,a3|a2+2|,a4|a3+3|,依此类推,则a2019的值为_5、有一列数按如下规律排列:,则第2022个数是 _三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,其中2、先化简,再求值,其中x,y13、如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长4、(1)有一列数1、3、5、7有无数项(无数个数),请观察其规律后写出其中第2
5、0项(从左往右数第20个数)是 ,第n项是 ;(2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式请观察下图,用二算法推导出13、135、1357的计算结果,猜测1357(2n1)的计算结果;(3)由(2)推导出2462n的结果5、单项式与,是次数相同的单项式,求的值-参考答案-一、单选题1、C【解析】【分析】将两整式相加即可得出答案【详解】,的值等于,故选:C【考点】本题考查了整式的加减,熟练掌握运算法则是解本题的关键2、C【解析】【分析】利用已知得出数字个位数的变化规律进而得出答案【详解】解:212,224,238,2416,2532,尾数每4个一循环,2022450
6、52,22022的个位数字应该是:4故选:C【考点】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键3、D【解析】【分析】原式去括号合并即可得到结果【详解】原式=3x-1-2x-2=x-3,故选D【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的关键4、C【解析】【分析】根据多项式的概念逐项分析即可【详解】A 多项式2a2b+ab-1的 次数是3,故不正确;B 多项式2a2b+ab-1的二次项系数是1,故不正确;C 多项式2a2b+ab-1的最高次项是2a2b ,故正确;D 多项式2a2b+ab-1的常数项是-1,故不正确;故选:C【考点】本题考查了多项式的概念,几个单项式的和
7、叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数5、C【解析】【分析】根据新定义的计算规则先计算括号内,按法则转化为整式加减计算,去括号合并,再根据新定义转化为整式的加减计算去括号,最后合并同类项即可【详解】解:,(x+y)(x-y)3x=2(x+y)-(x-y)3x=(2x+2y-x+y)3x=(x+3y)3x=2(x+3y)-3x=2x+6y-3x=-x+6y故选C【考点】本题考查新定义运算法则,掌握新定义运算法则实质,化为整式加减的常规计算,去括号,合并同类项是解题关键6、C【解析】【
8、分析】设正方形的边长为x,正方形的边长为y,再表示出正方形的边长为xy,正方形的边长为x+y,长方形的长为y+x+yx+2y,则可计算出整张卡片的周长为8x,从而可判断只需知道哪个正方形的边长【详解】解:设正方形的边长为x,正方形的边长为y,则正方形的边长为xy,正方形的边长为x+y,长方形的长为y+x+yx+2y,所以整张卡片的周长2(xy+x)+2(xy+x+2y)4x2y+2x2y+2x+4y8x,所以只需知道正方形的边长即可故选:C【考点】本题主要考查了整式加减应用,准确分析计算是解题的关键7、C【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、
9、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,第46、47、48、49、50个有序数对依次是、.所以C选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.8、D【解析】【分析】原式去括号合并得到最简结果,判断即可【详解】解:原式=xyz2+4yx-1-3xy+z2yx-3-2xyz2-xy=-4, 则代数式的
10、值与x、y、z的取值都无关 故选D【考点】本题主要考查了整式的加减,解决本题的关键是要熟练掌握运算法则是解本题的关键9、C【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)即可作出判断【详解】解:A、-x2y和2x2y所含字母相同,相同字母的指数相同,是同类项;B、23和32,都是整数,是同类项;C、-m3n2与m2n3,所含字母相同,相同字母的指数不同,不是同类项;D、2R与2R,所含字母相同,相同字母的指数相同,是同类项;故选C【考点】本题考查了同类项定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点10、D【解
11、析】【分析】根据单项式的定义,单项式系数、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数【详解】A.是多项式,故本选项错误;B. 不是整式,所以不是是单项式,故本选项错误;C. 的系数为,故本选项错误; D. 的次数是3,正确.故选:D.【考点】考查了单项式的定义确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键二、填空题1、3【解析】【分析】根据单项式次数的定义来求解单项式中所有字母的指数和叫做这个单项式的次数【详解】单项式5mn2的次数是:1+2=3故答案是:3【考点】考查了单项式,需注意:单项式中的数
12、字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数2、【解析】【分析】利用同类项的定义求出m,n的值,再代入求值即可【详解】解:单项式3xmy3与2x5yn+1是同类项,m5,3n+1,即m5,n2,(n)m(2)532,故答案为:32【考点】本题主要考查了同类项,解题的关键是熟记同类项的定义3、【解析】【分析】把xy看作整体,根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,计算即可【详解】(xy)5(xy)4(xy)3(xy)=(14)(xy)+(5+3)(xy)=3(xy)2(xy)故答案为:3(xy)2(xy)【考点】本题考
13、查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变,是基础知识比较简单4、-1009【解析】【分析】根据条件求出前几个数的值,再分n是奇数时,结果等于- ;n是偶数时,结果等于-;然后把n的值代入进行计算即可得解【详解】a1=0,a2=-|a1+1|=-|0+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=-|a4+4|=-|-2+4|=-2,所以n是奇数时,结果等于-;n是偶数时,结果等于-;a2019=-=-1009故答案为:-1009【考点】考查了数字的变化规律,解题关键是根据所求出的数,观察出n为奇数与偶数时的结果的变
14、化规律5、【解析】【分析】根据前4个数归纳类推出一般规律,由此即可得【详解】解:第1个数为,第2个数为,第3个数为,第4个数为,归纳类推得:第个数为,其中为正整数,则第2022个数是,故答案为:【考点】本题考查了数字类规律探索,正确归纳类推出一般规律是解题关键三、解答题1、,【解析】【分析】先去括号、合并同类项,再将未知数的值代入计算【详解】解: =,当时,原式=【考点】此题考查了整式加减法的化简求值,正确掌握整式加减法计算法则是解题的关键2、x2+2y2,【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可【详解】2x2x2+2xy+2y22x2+2xy+4y22x2+x22
15、xy2y22x2+2xy+4y2x2+2y2,当x,y1时,原式+2【考点】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键3、(1)ab4x2(2)【解析】【分析】(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可【详解】解:(1)ab4x2(2)依题意有:,将a=6,b=4,代入上式,得x2=3解得x1=,x2=(舍去)正方形的边长为4、(1)39; 2n1;(2) n2;(3)n2+n【解析】【分析】(1)由所给的数字可得第n个数为2n1,据此解答即可
16、;(2)对所给的图形进行分析,总结出规律即可;(3)利用(2)的方式进行求解即可【详解】解:(1)一列数1、3、5、7,第n个数为:2n1,第20个数为:220139,故答案为:39,2n1;(2)第(2)图中,分层小正方形的个数是(1+3)个,而整体计算小正方形的个数是22,所以,1+322;第(3)图中,分层小正方形的个数是(1+3+5)个,而整体计算小正方形的个数是32,所以,1+3+532;第(4)图中,分层小正方形的个数是(1+3+5+7)个,而整体计算小正方形的个数是42,所以,1+3+5+742;猜测1+3+5+7+(2n1)n2;(3)2+4+6+8+2n1+1+3+1+5+1+7+1+(2n1)+11+3+5+7+(2n1)+nn2+n【考点】本题主要考查数字的变化规律,解答的关键是由所给的数字分析清楚存在的规律5、5【解析】【分析】直接利用单项式的次数确定方法得出答案【详解】解:因为单项式与是次数相同的单项式,2+m=3+4,解得:m=5【考点】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键