收藏 分享(赏)

基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx

上传人:a**** 文档编号:958956 上传时间:2025-12-19 格式:DOCX 页数:19 大小:173.86KB
下载 相关 举报
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第1页
第1页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第2页
第2页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第3页
第3页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第4页
第4页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第5页
第5页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第6页
第6页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第7页
第7页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第8页
第8页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第9页
第9页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第10页
第10页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第11页
第11页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第12页
第12页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第13页
第13页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第14页
第14页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第15页
第15页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第16页
第16页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第17页
第17页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第18页
第18页 / 共19页
基础强化北师大版七年级数学上册第三章整式及其加减同步测评练习题(含答案详解).docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、七年级数学上册第三章整式及其加减同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则()ABC3D112、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项

2、式C有5个整式D以上答案均不对3、如图,边长为的正方形纸片上剪去四个直径为的半圆,阴影部分的周长是()ABCD4、下列关于多项式2a2b+ab-1的说法中,正确的是()A次数是5B二次项系数是0C最高次项是2a2bD常数项是15、计算的结果为()ABCD6、当x=-1时,代数式2ax33bx+8的值为18,那么,代数式9b6a+2=()A28B28C32D327、下列各式中去括号正确的是()Aa2(2ab2+b)a22ab2+bB2x23(x5)2x23x+5C(2x+y)(x2+y2)2x+y+x2y2Da34a2+(13a)a3+4a21+3a8、对于式子,下列说法正确的是()A有5个单项

3、式,1个多项式B有3个单项式,2个多项式C有4个单项式,2个多项式D有7个整式9、如图所示的运算程序中,若开始输入的 x 值为 15,则第 1 次输出的结果为 18,第 2 次输出的结果为 9, 第 2021 次输出的结果为() A3B4C6D910、在0,1,x,3x,中,是单项式的有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、三个连续偶数,中间一个数为,则这三个数的积为_2、如果代数式的值为,那么代数式的值为_3、若x23x3,则3x29x+7的值是 _4、某种桔子的售价是每千克x元,用面值为100元的人民币购买了6千克,应找回_元5

4、、如图所示的图形是按一定规律排列的则第个图形中的个数为_三、解答题(5小题,每小题10分,共计50分)1、(1)有一列数1、3、5、7有无数项(无数个数),请观察其规律后写出其中第20项(从左往右数第20个数)是 ,第n项是 ;(2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式请观察下图,用二算法推导出13、135、1357的计算结果,猜测1357(2n1)的计算结果;(3)由(2)推导出2462n的结果2、【观察】149=49,248=96,347=141,2327=621,2426=624,2525=625,2624=624,2723=621,473=141,482

5、=96,491=49【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为 ;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是 【类比】观察下列两数的积:159,258,357,456,mn,564,573,582,591猜想mn的最大值为 ,并用你学过的知识加以证明3、小明在计算 5x2+3xy+2y2加上多项式A 时,由于粗心,误算成减去这个多项式而得到2x23xy+4y2(1)求多项式 A;(2)求正确的运算结果4、计算:(1)5(2)23+(36)6;(2);(3)5a273a5+a2a2;(4)2y3+(x2y+3xy2)2(xy2y

6、3)5、下列图形是用五角星摆成的,如果按照此规律继续摆下去:(1)第4个图形需要用 个五角星;第5个图形需要用 个五角星;(2)第n个图形需要用 个五角星;(3)用6064个五角星摆出的图案应该是第 个图形;(4)现有1059个五角星,能否摆成符合以上规律的图形(1059个五角星要求全部用上),请说明理由-参考答案-一、单选题1、D【解析】【分析】根据添括号法则,对原式变形,再代入求值,即可【详解】,当时,原式=7+4=11故选D【考点】本题主要考查代数式求值,掌握添括号法则,是解题的关键2、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详

7、解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键3、D【解析】【分析】根据题意,阴影部分的周长等于正方形的周长减去4,再加上4个半圆的周长,即可求得答案【详解】解:由题意可得:阴影部分的周长故选D【考点】本题考查了列代数式,根据题意求得周长是解题的关键4、C【解析】【分析】根据多项式的概念逐项分析即可【详解】A 多项式2a2b+ab-1的 次数是3,故不正确;B 多项式2a2b+ab-1的二次项系数

8、是1,故不正确;C 多项式2a2b+ab-1的最高次项是2a2b ,故正确;D 多项式2a2b+ab-1的常数项是-1,故不正确;故选:C【考点】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数5、A【解析】【分析】根据整式的加减可直接进行求解【详解】解:;故选A【考点】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键6、C【解析】【分析】首先根据当x1时,代数式2ax3-3bx+8的值为18,求出-2a+3b的值为10再把9b-6a+2改

9、为3(-2a+3b)+2,最后将-2a+3b的值代入3(-2a+3b)+2中即可【详解】解:当x=-1时,代数式2ax3-3bx+8的值为18,-2a+3b+8=18,-2a+3b=10,则9b-6a+2,=3(-2a+3b)+2,=310+2,=32,故选:C【考点】此题主要考查代数式求值,掌握整体代入的思想是解答本题的关键7、D【解析】【分析】直接利用去括号法则进而分析得出答案【详解】解:A、a2-(2a-b2-b)=a2-2a+b2+b,故此选项错误;B、2x2-3(x-5)=2x2-3x+15,故此选项错误;C、-(2x+y)-(-x2+y2)=-2x-y+x2-y2,故此选项错误;D

10、、-a3-4a2+(1-3a)=-a3+4a2-1+3a,正确故选:D【考点】此题主要考查了去括号法则,正确掌握去括号法则是解题关键8、C【解析】【分析】分别利用多项式以及单项式的定义分析得出答案【详解】有4个单项式:,;2个多项式:共有6个整式综上,有4个单项式,2个多项式故选:C【考点】本题主要考查了多项式以及单项式,正确把握相关定义是解题关键9、A【解析】【分析】首先分别求出第3次、第4次、第5次、第6次、第7次、第8次输出的结果各是多少,总结出规律,然后判断出第2021次输出的结果为多少即可【详解】第1次输出的结果为:15+318,第2次输出的结果为:189,第3次输出的结果为:9+3

11、12,第4次输出的结果为:126,第5次输出的结果为:63,第6次输出的结果为:3+36,第7次输出的结果为:63,第8次输出的结果为:3+36,第9次输出的结果为:63,从第4次开始,以6,3依次循环,并且第n次(n3)时,如果n-3为偶数,则输出结果为3,如果n-3为奇数,则输出结果为6,(20213)2201821009,第2021次输出的结果为3故选:A【考点】此题考查了程序图的规律问题,解题的关键是正确分析题目中程序的运算规律10、D【解析】【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可【详解】根据单项式的

12、定义可知,只有代数式0,-1,-x, a,是单项式,一共有4个.故答案选D.【考点】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.二、填空题1、#【解析】【分析】根据连续偶数之间的差值为2可求【详解】三个连续偶数,中间一个数为前一个偶数为:,后一个偶数为:三个数的积为:故答案为:【考点】本题考查了平方差公式、单项式乘多项式等,解题的关键在于用n表示出三个偶数2、【解析】【分析】原式去括号合并整理后,将a+8b的值代入计算即可求值【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b),当a+8b=-5时,原式=10故答案为10【考点】此题考查了整式的加减-化简求值,熟

13、练掌握运算法则是解本题的关键3、-2【解析】【分析】首先把3x29x7化成3(x23x)7,然后把x23x3代入求解即可【详解】解:x23x3,3x29x73(x23x)73(3)797-2故答案为:-2【考点】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简4、(100-6x)【解析】【分析】根据单价数量=总价求出买桔子一共花的钱,然后用100减去已经购买的钱即可解答【详解】解:应找回(100-6x)元故答案为:(100-6x)

14、【考点】本题考查用字母表示数,列代数式等知识,是基础考点,掌握相关知识是解题关键5、【解析】【分析】根据已知图形,即可得出第n个图形中圆的个数为3n+1,据此可得【详解】解:第一个图形中圆的个数:4=31+1,第二个图形中圆的个数:7=32+1,第三个图形中圆的个数:10=33+1,第四个图形中圆的个数:13=34+1,第n个图形中圆的个数为:3n +1 ,故答案为:.【考点】本题主要考查图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的三、解答题1、(1)39; 2n1;(2) n2;(3)n2+n【解析】【分析】(1)由所给的数字可得第n个数为2n1,据此解

15、答即可;(2)对所给的图形进行分析,总结出规律即可;(3)利用(2)的方式进行求解即可【详解】解:(1)一列数1、3、5、7,第n个数为:2n1,第20个数为:220139,故答案为:39,2n1;(2)第(2)图中,分层小正方形的个数是(1+3)个,而整体计算小正方形的个数是22,所以,1+322;第(3)图中,分层小正方形的个数是(1+3+5)个,而整体计算小正方形的个数是32,所以,1+3+532;第(4)图中,分层小正方形的个数是(1+3+5+7)个,而整体计算小正方形的个数是42,所以,1+3+5+742;猜测1+3+5+7+(2n1)n2;(3)2+4+6+8+2n1+1+3+1+

16、5+1+7+1+(2n1)+11+3+5+7+(2n1)+nn2+n【考点】本题主要考查数字的变化规律,解答的关键是由所给的数字分析清楚存在的规律2、(1)625;(2)a+b=50; 900;证明见解析.【解析】【分析】发现:(1)观察题目给出的等式即可发现两数相乘,积的最大值为625;(2)观察题目给出的等式即可发现a与b的数量关系是ab50;类比:由于mn60,将n60m代入mn,得mnm260m(m30)2900,利用二次函数的性质即可得出m30时,mn的最大值为900【详解】解:发现:(1)上述内容中,两数相乘,积的最大值为625故答案为625;(2)设参与上述运算的第一个因数为a,

17、第二个因数为b,用等式表示a与b的数量关系是a+b=50故答案为a+b=50;类比:由题意,可得m+n=60,将n=60m代入mn,得mn=m2+60m=(m30)2+900,m=30时,mn的最大值为900故答案为900【考点】本题考查了因式分解的应用,配方法,二次函数的性质,是基础知识,需熟练掌握3、 (1)3x2+6xy2y2(2)8x2+9xy【解析】【分析】(1)根据题意得出A的表达式,再去括号,合并同类项即可;(2)根据题意得出整式相加减的式子,再去括号,合并同类项即可(1)(5x2+3xy+2y2)A2x23xy+4y2,A(5x2+3xy+2y2)(2x23xy+4y2)5x2

18、+3xy+2y22x2+3xy4y23x2+6xy2y2;(2)由题意得,(5x2+3xy+2y2)+(3x2+6xy2y2)5x2+3xy+2y2+(3x2+6xy2y28x2+9xy【考点】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键4、 (1)(2)25(3)(4)【解析】【分析】(1)先算平方,然后乘除,最后加减;(2)先提公因数,然后计算括号里的分数加减,最后算乘法;(3)直接合并同类项即可;(4)先去括号,然后合并同类项即可(1)解:原式(2)解:原式(3)解:原式(4)解:原式【考点】本题考查了有理数的运算解题的关键在于选取适当的方法进行计算5、(1

19、)13,16;(2)(3n+1);(3)2021;(4)不能,见解析【解析】【分析】(1)不难看出后一个图形比前一个图形多3个五角星,据此进行求解即可;(2)结合(1)进行分析即可得出结果;(3)(4)利用(2)中的结论进行求解即可【详解】解:(1)由题意得:第1个图形需要用五角星的个数为:4,第2个图形需要用五角星的个数为:7=4+3=4+31,第3个图形需要用五角星的个数为:10=4+3+3=4+32,第4个图形需要用五角星的个数为:13=4+3+3+3=4+33,第5个图形需要用五角星的个数为:16=4+3+3+3+3=4+34,故答案为:13,16;(2)由(1)得:第n个图形需要用五角星的个数为:4+3(n-1)=3n+1,故答案为:(3n+1);(3)由题意得:3n+1=6064,解得:n=2021,故答案为:2021;(4)不能,理由如下:由题意得:3n+1=1059,解得:n=,不是整数,1059个五角星不能摆成符合以上规律的图形【考点】本题主要考查了图形的变化规律,解答的关键是由所求的图形总结出所存在的规律

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1