1、八年级数学上册第十四章整式的乘法与因式分解专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则为()A15B2C8D22、若(bc)24(1b)(c1),则b+c的值是()A1B0C1D23、已
2、知m2n2nm2,则的值是()A1B0C1D4、如果,那么、的值等于()A,B,C,D,5、计算:()AaBCD6、若x24x+10,则代数式2x2+8x+1的值为()A0B1C2D37、下列分解因式错误的是()A116a2(14a)(14a)Bx3xx(x21)Ca2b2c2(abc)(abc)Dm20.01(m0.1)(m0.1)8、下列各多项式中,能运用公式法分解因式的有()A4个B5个C6个D7个9、若多项式因式分解的结果为,则常数的值为()AB2CD610、已知则的大小关系是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、利用1个aa的正方形,1个
3、bb的正方形和2个ab的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式_2、定义ab=a(b+1),例如23=2(3+1)=24=8则(x1)x的结果为_3、定义为二阶行列式,规定它的运算法则为=adbc.则二阶行列式的值为_.4、若x,y满足方程组则的值为_.5、若是一个完全平方式,则m=_三、解答题(5小题,每小题10分,共计50分)1、如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a3,b2时,求矩形中空白部分的面积2、解答下列问题:(1)已知,求的值;(2)若,求的
4、值3、如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积4、先分解因式,再求值:,其中5、已知是多项式的一个因式,求a,b的值,并将该多项式因式分解-参考答案-一、单选题1、B【解析】【分析】根据多项式乘以多项式展开,即可得值【详解】解:故选B【考点】本题考查了多项式乘以多项式,正确的计算是解题的关键2、D【解析】【分析】先将等式的右边展开并移项到左边,然后再根据完全平方公式可以分解因式,即可得到b+c的值【详解】解:(bc)24(1b)(c1),
5、b22bc+c24c44bc+4b,(b2+2bc+c2)4(b+c)+40,(b+c)24(b+c)+40,(b+c2)20,b+c2,故选:D【考点】本题考查因式分解的应用,掌握运用完全平方公式进行因式分解是解答本题的关键.3、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键4、C【解析】【分析】先根据同底数幂的乘法和积的乘方计算法则计算出,由此进行求解即可得到答
6、案【详解】解:3n=9,3m+3=15,解得:n=3,m=4,故选C【考点】本题主要考查了同底数幂的乘法,积的乘方,解题的关键在于能够熟练掌握相关计算法则5、D【解析】【分析】利用同底数幂的乘法法则运算【详解】解:,故选:D【考点】本题考查了同底数幂的乘法运算,解题的关键是掌握同底数幂相乘,底数不变,指数相加6、D【解析】【分析】给条件的代数式求值问题,先观察代数式,把条件变成需要的形式,然后整体代入,计算即可【详解】x24x+10,x24x1,2x2+8x2,原式2+13故选择:D【考点】本题考查代数式的值问题,关键是把条件变性后,整体代入,如果次数较高的代数式一般把条件高次的求出,然后用降
7、次方法进行化简,在整体代入求值7、B【解析】【分析】运用平方差公式、提公因式法逐项分析【详解】A、116a2(14a)(14a),正确;B、x3xx(x21) x(x1)(x1),错误;C、a2b2c2(abc)(abc),正确;D、m20.01(m0.1)(m0.1),正确;故选B【考点】本题考查因式分解的方法,熟练掌握平方差公式、提公因式法是关键8、B【解析】【分析】利用完全平方公式及平方差公式的特征判断即可【详解】解:(1)可用平方差公式分解为;(2)不能用平方差公式分解;(3)可用平方差公式分解为;(4)可用平方差公式分解为4am;(5)可用平方差公式分解为;(6)可用完全平方公式分解
8、为 ;(7)不能用完全平方公式分解;能运用公式法分解因式的有5个,故选B【考点】此题考查了因式分解运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键9、B【解析】【分析】根据多项式的乘法法则计算出的结果,然后与比较即可【详解】解:=x2+2x-8=,m=2故选B【考点】此题考查了十字相乘法和整式的乘法,熟练掌握因式分解和整式的乘法是互为逆运算是解本题的关键10、A【解析】【分析】先把a,b,c化成以3为底数的幂的形式,再比较大小.【详解】解:故选A.【考点】此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.二、填空题1、a2+2ab+b2=(a+b)2【解析】【详
9、解】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为ab,面积为(ab)2,所以a22abb2(ab)2点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系2、x21【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可【详解】解:根据题意得:(x1)x=(x1)(x+1)=x21故答案为:x21【考点】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键3、1【解析】【详解】由题意可得:=.故答案为1.4、【解析】【分析】方程组中第二个方程整理后求出x+y的值,原式利用平方差公式变形,将各自的值
10、代入计算即可求出值【详解】解:由得,因为,所以.故答案为【考点】此题考查了二元一次方程组的解,以及平方差公式,将原式进行适当的变形是解本题的关键5、8【解析】【分析】运用完全平方公式求解即可【详解】解:是一个完全平方式m=8故答案为8【考点】本题考查了完全平方式,掌握完全平方公式的结构特点是解答本题的关键三、解答题1、(1)Sabab+1;(2)矩形中空白部分的面积为2;【解析】【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)Sabab+1;(2)当a3,b2时,S632+12;【考点】本题考查阴影部分
11、面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键2、(1)1500;(2)27【解析】【分析】(1)先逆用积的乘方和幂的乘方运算法则,然后将已知代入即可解答;(1)先由得3x+4y=3,然后逆用积的乘方和幂的乘方运算法则将【详解】解:(1),;(2),【考点】本题考查了积的乘方和幂的乘方法则的逆用,灵活应用相关运算法则是解答本题的关键3、(1)矩形的周长为4m;(2)矩形的面积为33【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:mn,矩形的宽为:m+n,矩形
12、的周长为:2(m-n)+(m+n)=4m;(2)矩形的面积为S=(m+n)(mn)=m2-n2,当m=7,n=4时,S=72-42=33【考点】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答4、,48【解析】【分析】先将原式变形,再提取公因式,整理即可【详解】解:;当时,原式【考点】本题考查了提取公因式法分解因式及代入求值,正确确定公因式是解题关键5、,【解析】【分析】由题意可假设多项式x3x2+ax+b=(x2+2x+1)(x+m),则将其展开、合并同类项,并与x3 x2+ax+b式子中x的各次项系数对应相等,依次求出m、b、a的值,那么另外一个因式即可确定【详解】解:设, 则,所以,解得,所以 【考点】本题考查了因式分解的应用,用待定系数法来解较好