1、人教版八年级数学上册第十五章分式同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若分式在实数范围内有意义,则实数x的取值范围是()Ax2Bx2Cx=2Dx22、下列运算中,错误的是()ABCD3、
2、一列火车长米,以每秒米的速度通过一个长为米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A秒B秒C秒D秒4、的结果是()ABCD15、方程的解为()Ax=1Bx=0Cx=Dx=16、下列式子:,其中分式有()A1个B2个C3个D4个7、已知 ,则 的值是()ABC2D-28、对分式通分后,的结果是()ABCD9、若数a与其倒数相等,则的值是()ABCD010、若分式在实数范围内有意义,则x的取值范围是()Ax5Bx0Cx5Dx5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、比较大小:_(选填,)2、计算(1)(x)(2)(2)(4)
3、3、已知ab4,a+b3,则_4、化简:(1_5、计算的结果是_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,然后从-2,-1,0中选择适当的数代入求值2、先化简,再求值:,其中满足3、解下列分式方程:(1)(2)4、在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从地沿相同路线骑行去距地30千米的地,已知甲骑行的速度是乙的1.2倍(1)若乙先骑行2千米,甲才开始从地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从地出发,则甲、乙恰好同时到达地,求甲骑行的速度5、先化简,再求值:,其中x取不等式组的适当整数解-参考答案-一
4、、单选题1、D【解析】【分析】直接利用分式有意义的条件分析得出答案【详解】代数式在实数范围内有意义,x+20,解得:x2,故选D【考点】本题主要考查了分式有意义的条件,熟练掌握分母不为0时分式有意义是解题的关键2、D【解析】【分析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变据此作答【详解】解:A、分式的分子、分母同时乘以同一个非0的数c,分式的值不变,故A正确;B、分式的分子、分母同时除以同一个非0的式子(a+b),分式的值不变,故B正确;C、分式的分子、分母同时乘以10,分式的值不变,故C正确;D、,故D错误故选D【考点】本题考查了分式的基本性质无论是把
5、分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为03、A【解析】【分析】【详解】火车走过的路程为米,火车的速度为米秒,火车过桥的时间为(秒故选:4、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键5、D【解析】【详解】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D点睛:此题考查了解分式方程,利用了转化的思想
6、,解分式方程注意要检验6、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键7、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键8、B【解析】【分析】把a2-b2因式分解,得出的最简公分母,根据分式的基本性质即可得答案【详解】a2-b2=(a+b)(a-b),分式的最简公分母是,通分后,=故选:B【考点】本题考查分式的通分,正确得出最简公分母是解题关键9、A【解析】【分析】先将
7、分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a1,进而代入计算即可求得答案【详解】解:原式,数a与其倒数相等,a1,原式,故选:A【考点】本题考查了分式的除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键10、A【解析】【分析】根据分式有意义的条件列不等式求解【详解】解:根据分式有意义的条件,可得:,故选:A【考点】本题考查分式有意义的条件,理解分式有意义的条件是分母不能为零是解题关键二、填空题1、【解析】【分析】先计算,然后比较大小即可【详解】解:,故答案为:【考点】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练
8、掌握运算法则是解题关键2、(1)28x3;(2);(3)(xy)4;(4)x27【解析】【分析】(1)先计算乘方,再计算除法,最后计算减法即可;(2)先计算零次幂,乘方,再计算加减法;(3)先计算乘方,再计算乘法即可;(4)先按照完全平方公式、去括号法则去括号,再合并同类项.【详解】(1)(x),=-,=,=28x3;(2),=1-+4,=;(3),=,=;(4)=,= x27.【考点】此题考查计算能力,有理数的混合运算,整式的混合运算,按照先计算乘方再算乘除法,最后计算加减法的顺序进行计算.3、【解析】【分析】先通分:,然后再代入数据即可求解【详解】解:由题意可知:,故答案为:【考点】本题考
9、查了分式的加减运算及求值,属于基础题,计算过程中细心即可4、【解析】【分析】原式括号中两项通分,同时利用除法法则变形,约分即可得到结果【详解】(1+)=,故答案为.【考点】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法5、【解析】【分析】先通分,再相加即可求得结果【详解】解:,故答案为:【考点】此题考察分式的加法,先通分化为同分母分式再相加即可三、解答题1、,2【解析】【分析】根据分式的加减运算以及乘除运算法则进行化简,然后将x的值代入原式即可求出答案【详解】解:= = = 原式=【考点】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则2、2
10、a2+4a,6【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再代值计算即可求出值【详解】解:原式=2a(a+2)=2a2+4a.,a2+2a=3.原式=2(a2+2a)=6.【考点】此题主要考查了分式的化简求值,正确化简分式是解题关键3、(1)x=1(2)【解析】【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是否使得公分母为0,即可得到分式方程的解【详解】(1)等式两边同乘以(1-2x)得:2x-3-(1-2x)=0,去括号得:2x-3-1+2x=0,移项合并得:4x=4,解得:x=1经检验:x=1时,1-
11、2x0,则x=1是原分式方程的解(2)等式两边同乘以(3x-4)得:5x=-1-2(3x-4), 去括号得:5x=-1-6x+8,移项合并得:11x=7, 解得:经检验:时,3x-40,则是原分式方程的解【考点】本题考查了分式方程,解题的关键是掌握分式方程的计算方法,根据题目先将分式方程去分母转化为整式方程,在求出整式方程的解得到x的值,分式方程不要忘记验根4、 (1)(2)千米/时【解析】【分析】(1)设乙的速度为千米/时,则甲的速度为千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为千米/时,则甲的速度为千米/时,根据甲、乙恰好同时到达地列方程求解即可(1)解:设乙的速
12、度为千米/时,则甲的速度为千米/时,由题意得:,解得:,则,答:甲骑行的速度为千米/时;(2)设乙的速度为千米/时,则甲的速度为千米/时,由题意得:,解得,经检验是分式方程的解,则,答:甲骑行的速度为千米/时【考点】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键5、,-3或【解析】【分析】先进行分式去括号,结合完全平方式和因式分解进行分式的混合运算,得到化简后的分式再解不等式组,得出x的取值范围,且注意使原分式有意义的条件,即可得出x的具体值,将其带入化简后的分式即可【详解】原式解不等式组得其整数解为-1,0,1,2,3由题得:,x可以取0或2分当时,原式(当时,原式)【考点】本题考查分式的化简求值,和解不等式组解题时需注意使分式有意义的条件