1、人教版八年级数学上册第十三章轴对称章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是轴对称图形的是()ABCD2、如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为
2、AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的ADH中 ( )AAH=DHADBAH=DH=ADCAH=ADDHDAHDHAD3、如图是44的正方形网格,其中已有3个小方格涂成了黑色现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A1个B2个C3个D4个4、等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A或或B或C或D或5、观察下列作图痕迹,所作线段为的角平分线的是()ABCD6、已知在ABC中,点P在三角形内部,点P到三个顶点的距离相等,则点P是()A三条角平分线的交点B三条高线的
3、交点C三条中线的交点D三条边垂直平分线的交点7、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C40D258、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴9、若点A(1+m,1n)与点B(3,2)关于y轴对称,则m+n的值是()A5B3C3D110、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A(5,2)关于x轴对称的点的坐标为 _2、如图,为内部一条射线,点为射线上一点,点分别为边上动点,则周长的最小值
4、为_3、如图,已知ABCADE,且点B与点D对应,点C与点E对应,点D在BC上,BAE=114,BAD=40,则E的度数是_4、如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为 12, 则 AD=_5、如图,等边ABC的边长为6,点D是AB上一动点,过点D作DEAC交BC于E,将BDE沿着DE翻折得到,连接,则的最小值为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数2、如图所示的四个图形中,从几何图
5、形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由3、如图,点D是等边三角形ABC的边BC上一点,以AD为边作等边ADE,连接CE.(1)求证:;(2)若BAD=20,求AEC的度数. 4、已知点A(1,3a1)与点B(2b+1,2)关于x轴对称,点C(a+2,b)与点D关于原点对称(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积5、已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=
6、EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍-参考答案-一、单选题1、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫
7、做轴对称图形,这条直线叫做对称轴2、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题【详解】解:由图形的对称性可知:AB=AH,CD=DH,正方形ABCD,AB=CD=AD,AH=DH=AD故选B【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移3、C【解析】【分析】根据轴对称的性质可直接进行求解【详解】解:如图所示:,共3个,故选:C【考点】本题主要考查轴对称图形的性质,熟练掌握轴对称的性质是解题的关键4、A【解析】【分析】设另一个角是x,表示出一个角是2x-20,然后分x是顶角,2x-20是
8、底角,x是底角,2x-20是顶角,x与2x-20都是底角根据三角形的内角和等于180与等腰三角形两底角相等列出方程求解即可【详解】设另一个角是x,表示出一个角是2x20,x是顶角,2x20是底角时,x+2(2x20)180,解得x44,所以,顶角是44;x是底角,2x20是顶角时,2x+(2x20)180,解得x50,所以,顶角是2502080;x与2x20都是底角时,x2x20,解得x20,所以,顶角是180202140;综上所述,这个等腰三角形的顶角度数是44或80或140故选:A【考点】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的
9、情况容易漏掉而导致出错5、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点6、D【解析】【分析】根据线段垂直平分线的性质解答即可【详解】解:在ABC中,三角形内部的点P到三个顶点的距离相等,点P是三条边垂直平分线的交点,故选:D【考点】本题考查了线段垂直平分线的性质,熟练掌握线段垂直平分线上的点到线段的两个端点的
10、距离相等是解答的关键7、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键8、A【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的是轴对称图形的含义,轴对称图形的
11、识别,掌握定义,确定对称轴是解题的关键.9、D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得【详解】点A(1+m,1n)与点B(3,2)关于y轴对称,1+m=3,1n=2,解得:m=2,n=1,所以m+n=21=1,故选D【考点】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键10、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直
12、线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题1、(5,2)【解析】【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答【详解】解:点A(5,-2)关于x轴对称的点的坐标是(5,2)故答案为:(5,2)【考点】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)
13、关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数2、6【解析】【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为点N,PMN的最小周长为PMMNPNP1MMNP2NP1P2,即为线段P1P2的长,连结OP1、OP2,则OP1OP2OP6,又P1OP22AOB60,OP1P2是等边三角形,P1P2OP16,即PMN的周
14、长的最小值是6故答案是:6【考点】本题考查了等边三角形的性质和判定,轴对称最短路线问题的应用,关键是确定M、N的位置3、36【解析】【分析】根据全等三角形的性质得出AB=AD,ABD=ADE,根据等腰三角形的性质和三角形内角和定理求出ABD=70,求出DAE和ADE,再根据三角形内角和定理求出E即可【详解】解:ABCADE,AB=AD,ABD=ADB,BAD=40,ABD=ADB=(180-BAD)=70,ABCADE,ADE=ABD=70,BAE=114,BAD=40,DAE=BAE-BAD=114-40=74,E=180-ADE-DAE=180-70-74=36,故答案为:36【考点】本题
15、考查了全等三角形的性质,等腰三角形的性质,三角形内角和定理等知识点,能熟记全等三角形的对应边相等和全等三角形的对应角相等是解此题的关键4、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为ABC的高,AHB90,BAH90ABH,而2C90ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三
16、角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键5、3【解析】【分析】先找出B点变化的规律,可发现B在ABC的角平分线上运动,故AB取最小值时,B点在AC中点上【详解】如图,DEAC,ABC是等边三角形,BDE是等边三角形,折叠后的BDE也是等边三角形,过B作DE的垂直平分线,BDBE,BDBE,BB都在DE 的垂直平分线上,AB最小,即A到DE的垂直平分线的距离最小,此时ABBB,AB=AC=1263,即AB的最小值是3故答案为:3【考点】本题主要考查等边三角形和垂直平分线的性质,掌握和理解等边三角形性质是本题关键三、解答题1、(1)证明见解析;(2)BOC=100【解析】【分
17、析】(1)首先根据等腰三角形的性质得到ABC=ACB,然后利用高线的定义得到ECB=DBC,从而得证;(2)首先求出A的度数,进而求出BOC的度数【详解】解:(1)证明:AB=AC,ABC=ACB,BD、CE是ABC的两条高线,DBC=ECB,OB=OC;(2)ABC=50,AB=AC,A=180250=80,BOC=360-18080=100【考点】考点:等腰三角形的性质2、图(2),仅它不是轴对称图形【解析】【详解】试题分析:观察图形发现(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形,由此即可得出结论试题解析:解:(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形故从几何图
18、形变换的角度考虑,图(2)与其它三个不同3、(1)见解析;(2)100【解析】【分析】(1)根据ADE与ABC都是等边三角形,得到AC=AB,AE=AD,DAE=BAC=60,从而得到DAE+CAD=BAC+CAD,即CAE=BAD,利用SAS证得ABDACE;(2)由ABDACE,得到ACE=B=60,BAD=CAE=20,再由三角形内角和为180即可求出AEC的度数【详解】(1)证明:ADE与ABC都是等边三角形,AC=AB,AE=AD,DAE=BAC=60,DAE+CAD=BAC+CAD,即CAE=BAD,在CAE与BAD中,ABDACE(SAS);(2)ABDACE,ACE=B=60,
19、BAD=CAE=20,AEC=180-60-20=100【考点】此题考查全等三角形的判定与性质及等边三角形的性质,根据等边三角形中隐含的条件可以得到证明三角形全等的一些条件是解题关键4、(1)点A(1,2),B(1,2),C(3,1),D(3,1);(2)图见详解,12【解析】【分析】(1)根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,分别求出a,b的值,进而求出点A、B、C的坐标,再根据关于原点的对称点,横纵坐标都变成相反数求出点D的坐标;(2)把这些点按ADBCA顺次连接起来,再根据三角形的面积公式计算其面积即可【详解】解:(1)点A(1,3a1)与点B(2b1,2)关于x
20、轴对称,2b11,3a12,解得a1,b1,点A(1,2),B(1,2),C(3,1),点C(a2,b)与点D关于原点对称,点D(3,1);(2)如图所示:四边形ADBC的面积为:424412【考点】本题考查的是作图轴对称变换,熟知关于x、y轴对称的点的坐标特点是解答此题的关键5、(1)证明见解析;(2)ACD、ABE、BCE、BHG【解析】【详解】分析:(1)由ACBD、BFCD知ADE+DAE=CGF+GCF,根据BGE=ADE=CGF得出DAE=GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知SADC=2a2=2SADE,
21、证ADEBGE得BE=AE=2a,再分别求出SABE、SACE、SBHG,从而得出答案详解:(1)BGE=ADE,BGE=CGF,ADE=CGF,ACBD、BFCD,ADE+DAE=CGF+GCF,DAE=GCF,AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,SADE=AEDE=2aa=a2,BH是ABE的中线,AH=HE=a,AD=CD、ACBD,CE=AE=2a,则SADC=ACDE=(2a+2a)a=2a2=2SADE;在ADE和BGE中,ADEBGE(ASA),BE=AE=2a,SABE=AEBE=(2a)2a=2a2,SACE=CEBE=(2a)2a=2a2,SBHG=HGBE=(a+a)2a=2a2,综上,面积等于ADE面积的2倍的三角形有ACD、ABE、BCE、BHG点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质