1、人教版八年级数学上册第十三章轴对称专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点A(4,m3),B(2n,1)关于x轴对称,则()Am2,n0Bm2,n2Cm4,n2Dm4,n22、给出下列
2、命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个3、观察下列作图痕迹,所作线段为的角平分线的是()ABCD4、如图是A,B,C三岛的平面图,C岛在A岛的北偏东35度方向,B岛在A岛的北偏东80度方向,C岛在B岛的北偏西55度方向,则A,B,C三岛组成一个( )A等腰直角三角形B等腰三角形C直角三角形D等边三角形5、以下是清华大学、北京大学、上海交通大学、浙江大学的校徽,其中是轴对称图形的是()ABCD6、等腰三角形一腰上的高与另一腰的夹角为,则顶角
3、的度数为()ABC或D或7、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个8、如图,在中,则的长为()ABCD9、在中,则的长度为()ABCD10、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)等腰三角形底边长为6cm,一腰上的中线把它的周长分成两部分的差为2cm,则腰长为_(2)已知的周长为24,于点D,若的周长为20,则AD的长为_(3)已知
4、等腰三角形的周长为24,腰长为x,则x的取值范围是_2、如图,分别以的边,所在直线为称轴作的对称图形和,线段与相交于点O,连接、有如下结论:;平分:;其中正确的结论个数为_3、在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有_种4、如图,已知AD是ABC的中线,E是AC上的一点,BE交AD于F,ACBF,DAC24,EBC32,则ACB_5、如图,在中,以点为圆心,以小于的长为半径作弧,分别交于点,交于点,再分别以点,为圆心,大于的长为半径作弧,两弧交于点,作射线交于点,连接,则_三、解答题(5小题,每小
5、题10分,共计50分)1、如图,已知锐角中,(1)请尺规作图:作的BC边上的高AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,则经过A,C,D三点的圆的半径_2、在中,在的外部作等边三角形,E为的中点,连接并延长交于点F,连接(1)如图1,若,求和的度数;(2)如图2,的平分线交于点M,交于点N,连接补全图2;若,求证:3、如图,ABC与DEF都是等腰直角三角形,AC=BC,DE=DF边AB,EF的中点重合于点O,连接BF,CD(1)如图,当FEAB时,易证BF=CD(不需证明);(2)当DEF绕点O旋转到如图位置时,猜想BF与CD之间的数量关系,并证明;(3)当ABC与DEF均为
6、等边三角形时,其他条件不变,如图,猜想BF与CD之间的数量关系,直接写出你的猜想,不需证明4、尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P(不写画图过程,保留作图痕迹)5、已知点A(1,3a1)与点B(2b+1,2)关于x轴对称,点C(a+2,b)与点D关于原点对称(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积-参考答案-一、单选题1、B【解析】【分析】根据点(x,y)关于x轴对称的点的坐标为(x,y)即可求得m、n值【详
7、解】解:点A(4,m3),B(2n,1)关于x轴对称,4=2n,m3=1,解得:n=2,m=2,故选:B【考点】本题考查了坐标与图形变换-轴对称、解一元一次方程,熟练掌握关于坐标轴对称的的点的坐标特征是解答的关键2、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B3、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为
8、AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点4、A【解析】【分析】先根据方位角的定义分别可求出,再根据角的和差、平行线的性质可得,从而可得,然后根据三角形的内角和定理可得,最后根据等腰直角三角形的定义即可得【详解】由方位角的定义得:由题意得:由三角形的内角和定理得:是等腰直角三角形即A,B,C三岛组成一个等腰直角三角形故选:A【考点】本题考查了方位角的定义、平行线的性质、三角形的内角和定理、等腰直角三角形的定义等知
9、识点,掌握理解方位角的概念是解题关键5、B【解析】【分析】利用轴对称图形定义进行依次分析即可【详解】A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B【考点】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形6、D【解析】【分析】分等腰三角形为锐角三角形和钝角三角形两种情况,然后分别根据直角三角形两锐角互余即可得【详解】依题意,分以下两种情况:(1)如图1,等腰为锐角三角形,顶角为,(2)如图2,等腰为钝角三角形,顶角为,综
10、上,顶角的度数为或故选:D【考点】本题考查了等腰三角形的定义、直角三角形两锐角互余等知识点,依据题意,正确分两种情况讨论是解题关键7、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键8、B【解析】【分析】根据等腰三角形性质求出B
11、,求出BAC,求出DAC=C,求出AD=DC=4cm,根据含30度角的直角三角形性质求出BD,即可求出答案【详解】AB=AC,C=30,B=30,ABAD,AD=4cm,BD=8cm,ADB=60C=30,DAC=C=30,CD=AD=4cm,BC=BD+CD=8+4=12cm故选B.【考点】本题考查了等腰三角形的性质,含30度角的直角三角形性质,三角形的内角和定理的应用,解此题的关键是求出BD和DC的长9、C【解析】【分析】根据直角三角形的性质30所对的直角边等于斜边的一半求解即可【详解】在RtABC中,3BC=12cmBC=4cmAB=8cm故选:C【考点】本题考查了含30度角的直角三角形
12、的性质,掌握含30度角的直角三角形的性质是解题的关键10、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题二、填空题1、 4cm或8cm 8 【解析】【分析】(1)根据题意画出图形,由题意得 ,即可得 ,又由等腰三角形的底边长为6cm,即可求得答案
13、(2)由ABC的周长为24得到AB,BC的关系,由ABD的周长为20得到AB,BD,AD的关系,再由等腰三角形的性质知,BC为BD的2倍,故可解出AD的值(3)设底边长为y,再由三角形的三边关系即可得出答案【详解】(1)如图, ,BD是中线由题意得存在两种情况:, , 腰长为:4cm或8cm故答案为:4cm或8cm(2)ABC的周长为24, 的周长为20 故答案为:8(3)设底边长为y等腰三角形的周长为24,腰长为x ,即 解得 故答案为:【考点】本题考查了三角形的综合问题,掌握等腰三角形的性质、等腰三角形三线合一的性质、三角形的周长定义、三角形的三边关系是解题的关键2、3【解析】【分析】根据
14、轴对称的性质以及全等三角形的性质一一判断即可【详解】解:和是的轴对称图形,故正确;,由翻折的性质得,又,故正确;,边上的高与边上的高相等,即点到两边的距离相等,平分,故正确;只有当时,才有,故错误;在和中,故错误;综上所述,结论正确的是故答案为:3【考点】本题考查轴对称的性质,全等三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案【详解】如图所示:故一共有13画法.4、100#100度【解析】【分析】延长AD到M,使得DMAD,连接BM,证BDMCDA(SAS),得得到BMACBF,
15、MDAC24,CDBM,再证BFM是等腰三角形,求出MBF的度数,即可解决问题【详解】解:如图,延长AD到M,使得DMAD,连接BM, 在BDM和CDA中, ,BDMCDA(SAS),BMACBF,MDAC24,CDBM,BFAC,BFBM,MBFM24,MBF180MBFM132,EBC32,DBMMBFEBC100,CDBM100,故答案为:100【考点】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型5、【解析】【分析】利用基本作图得到AG平分BAC,则可计算出BAG=CAG=B=30,所以AG=BG;
16、根据直角形三角形30角所对直角边是斜边的一半,知AG=2CG,则BG=BC,然后根据三角形面积与(底)高的关系计算的值【详解】解:由作法得,AG平分BACBAG=CAG=30B=90BAC=30B=BAGAG=BG在RtACG中,AG=2CGBG=2CGBG=BC=故答案为:【考点】本题考查了作图复杂作图,角平分线的性质,等腰三角形的性质,含30角的直角三角形三边的关系及三角形面积与底(高)的关系解题的关键是熟悉基本几何图形的性质三、解答题1、 (1)见解析(2)【解析】【分析】(1)分别以B、C为圆心,大于BC为半径作弧,两弧交于点E,连接AE交BC于D,则AD就是ABC的高;(2)由ADB
17、C可知,AC是经过A,C,D三点的圆的直径,根据垂径定理可知CD=BC=4,由勾股定理可求AC的长,进而可求半径(1)解:作图如图:(2)解:AB=AC,ADBCAD是ABC的中线BD=CD= AC= ADC=90AC是经过A,C、D三点的圆的直径半径r= 故答案为:【考点】本题考查了基本作图,等腰三角形的性质-“三线合一”,解题的关键是熟知等腰三角形的“三线合一”性质2、(1),;(2)作图见解析;见解析【解析】【分析】(1)结合等腰三角形和等边三角形的性质,可得ABD=ADB,从而求解出角度后,再计算BDF即可;(2)根据尺规作图作角平分线的方法画出的平分线即可;设ACM=BCM=,由AB
18、=AC,推出ABC=ACB=2,可得NAC=NCA=,DAN=60+,由ABNADN(SSS),推出ABN=ADN=30,BAN=DAN=60+,BAC=60+2,在ABC中,根据BAC+ACB+ABC=180,构建方程求出,再证明MNB=MBN即可解决问题【详解】(1),为等边三角形,又E为的中点,由“三线合一”知,;(2)如图所示:利用尺规作图的方法得到CP,交于点M,交于点N;如图所示,连接,平分,设,在等边三角形中,为的中点,在和中,在中,【考点】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用各类图形的性质进行综合分析3、 (1)见
19、解析(2)BF=CD;证明见解析(3)【解析】【分析】(1)如图,连接,先证、三点共线,再证,即可得出结论;(2)如图,连接、,证明,即可得出结论;(3)如图,连接、,证明,相似比为,即可得出结论(1)证明:如图,连接,与都是等腰直角三角形,边,的中点重合于点,于,、三点共线,在与中,;(2)解:猜想,理由如下:如图,连接、,与都是等腰直角三角形,边,的中点重合于点,在与中,;(3)解:猜想,理由如下:如图,连接、为等边三角形,点为边的中点,为等边三角形,点为边的中点,【考点】本题是几何变换综合题,考查了旋转变换的性质、等腰直角三角形的性质、全等三角形的判定与性质、等边三角形的性质、相似三角形
20、的判定与性质等知识,本题综合性强,熟练掌握等腰直角三角形的性质和等边三角形的性质,证明三角形全等和三角形相似是解题的关键,属于中考常考题型4、见解析.【解析】【分析】分别作线段CD的垂直平分线和AOB的角平分线,它们的交点即为点P【详解】如图,点P为所作【考点】本题考查了作图应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键5、(1)点A(1,2),B(1,2),C(3,1),D(3,1);(2)图见详解,12【解析】【分析】(1)根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,分别求出a,b的值,进而求出点A、B、C的坐标,再根据关于原点的对称点,横纵坐标都变成相反数求出点D的坐标;(2)把这些点按ADBCA顺次连接起来,再根据三角形的面积公式计算其面积即可【详解】解:(1)点A(1,3a1)与点B(2b1,2)关于x轴对称,2b11,3a12,解得a1,b1,点A(1,2),B(1,2),C(3,1),点C(a2,b)与点D关于原点对称,点D(3,1);(2)如图所示:四边形ADBC的面积为:424412【考点】本题考查的是作图轴对称变换,熟知关于x、y轴对称的点的坐标特点是解答此题的关键