1、人教版八年级数学上册第十三章轴对称专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个等腰三角形的周长为17cm,一边长为5cm,那么腰长为()A5cmB6cmC7cmD5cm或6cm2、一个
2、三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等3、如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的ADH中 ( )AAH=DHADBAH=DH=ADCAH=ADDHDAHDHAD4、如图,在ABC中,ACB90,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E若AC3,AB5,则DE等于()A2BCD5、以下是清华大学、北京大学、上海交
3、通大学、浙江大学的校徽,其中是轴对称图形的是()ABCD6、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D27、如图,有一张直角三角形纸片,两直角边AC5 cm,BC10 cm,将ABC折叠,使点B与点A重合,折痕为DE,则ACD的周长为()A10cmB12cmC15cmD20cm8、如图,在平面直角坐标系中,ABC位于第二象限,点B的坐标是(5,2),先把ABC向右平移4个单位长度得到A1B1C1,再作与A1B1C1关于于x轴对称的A2B2C2,则点B的
4、对应点B2的坐标是()A(3,2)B(2,3)C(1,2)D(1,2)9、如图,在中,观察图中尺规作图的痕迹,则的度数为()ABCD10、下列命题中,属于假命题的是()A边长相等的两个等边三角形全等B斜边相等的两个等腰直角三角形全等C周长相等的两个三角形全等D底边和顶角对应相等的两个等腰三角形全等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等边三角形ABC中,点D是边BC的中点,则BAD=_2、BC是等腰ABC和等腰DBC的公共底(A与D不重合),则直线AD必是_的垂直平分线3、如图,在ABC中,ABAC,BC边上的垂直平分线DE交BC于点D,交AC于点E,
5、BD=4,ABE的周长为14,则ABC的周长为_4、点A(5,2)关于x轴对称的点的坐标为 _5、如图,在中,AB的垂直平分线MN交AC于D点,连接BD,则的度数是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知锐角中,(1)请尺规作图:作的BC边上的高AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若,则经过A,C,D三点的圆的半径_2、如图,在中,过的中点作,垂足分别为点、(1)求证:;(2)若,求的度数3、如图,在ABC和DCB中,AD90,ACBD,AC与BD相交于点O(1)求证:ABCDCB;(2)OBC是何种三角形?证明你的结论4、如图,已知ABC中,AB=A
6、C,A=108,BD平分ABC求证:BC=AB+CD 5、如图,在RtABC中,ACB=90,A=40,ABC的外角CBD的平分线BE交AC的延长线于点E(1)求CBE的度数;(2)过点D作DFBE,交AC的延长线于点F,求F的度数-参考答案-一、单选题1、D【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边长或5cm是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成三角形【详解】当5cm是等腰三角形的底边时,则其腰长是(175)26(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17527(cm),能够组成三角形故该等腰三角形的腰长为:6cm或5cm故
7、选:D【考点】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键2、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为
8、60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.3、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题【详解】解:由图形的对称性可知:AB=AH,CD=DH,正方形ABCD,AB=CD=AD,AH=DH=AD故选B【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移4、C【解析】【详解】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.解:在RtABC中,由勾股定
9、理得:BC=4,连接AE,从作法可知:DE是AB的垂直评分线,根据性质AE=BE,在RtACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在RtADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.5、B【解析】【分析】利用轴对称图形定义进行依次分析即可【详解】A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B【考点】此题主要考查了轴对
10、称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形6、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质7、C【解析】【分析】根据图形翻折变换的性质得出AD=BD,故AC+(CD+AD)=AC+BC,由此即可得出结论【详解】ADE由BDE翻折而成,AD=BDAC=5cm,
11、BC=10cm,ACD的周长=AC+CD+AD=AC+BC=15cm故选C【考点】本题考查了翻折变换,熟知图形翻折不变性的性质是解答此题的关键8、D【解析】【分析】首先利用平移的性质得到A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到A2B2C2中B2的坐标,即可得出答案【详解】解:把ABC向右平移4个单位长度得到A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与A1B1C1关于于x轴对称的A2B2C2中B2的坐标为(-1,-2),故选D【考点】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键9、B【解析】【分析】先由等腰三角形的性质和三
12、角形的内角和定理求出BCA,进而求得ACD,由作图痕迹可知CE为ACD的平分线,利用角平分线定义求解即可【详解】在中,ACD=180-ACB=180-50=130,由作图痕迹可知CE为ACD的平分线,故选:B【考点】本题考查了等腰三角形的性质、三角形的内角和定理、角平分线的定义和作法,熟练掌握等腰三角形的性质以及角平分线的尺规作图法是解答的关键10、C【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,等边三角形的性质,直角三角形的性质,逐一判断选项,即可得到答案【详解】解:A、边长相等的两个等边三角形全等,是真命题,故A不符合题意;B、斜边相等的两个等腰直角三角形全等,是真命题,故B
13、不符合题意;C、周长相等的两个三角形不一定全等,原命题是假命题,故C符合题意;D、底边和顶角对应相等的两个等腰三角形全等,是真命题,故D不符合题意故选:C【考点】本题考查了命题与定理,牢记有关的性质、定义及定理是解决此类题目的关键二、填空题1、30【解析】【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空【详解】ABC是等边三角形, 又点D是边BC的中点, 故答案是:30【考点】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴2、BC【解析】【分析】根据题意
14、作图,再由“到线段两个端点距离相等的点在线段的垂直平分线上”及“两点确定一条直线”即可解答【详解】如图,根据题意得ABAC,DBDC,点A、D都在BC的垂直平分线上两点确定一条直线,直线AD是BC的垂直平分线故答案为:BC【考点】此题考查了线段垂直平分线性质的逆定理及直线的公理,属基础题3、22【解析】【详解】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE,然后求出ABE的周长=AB+AC,再求出BC的长,然后根据三角形的周长定义计算即可得解.【详解】BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,BE=EC,BC=2BD=8;又ABE的周长为14,AB+A
15、E+BE=AB+AE+EC=AB+AC=14,ABC的周长是:AB+AC+BC=14+8=22,故答案是:22【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的周长,熟记性质是解题的关键4、(5,2)【解析】【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答【详解】解:点A(5,-2)关于x轴对称的点的坐标是(5,2)故答案为:(5,2)【考点】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(
16、3)关于原点对称的点,横坐标与纵坐标都互为相反数5、15【解析】【分析】根据等腰三角形两底角相等,求出ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相等,可得AD=BD,根据等边对等角的性质,可得ABD=A,然后求DBC的度数即可【详解】AB=AC,A=50, ABC=(180A)=(18050)=65, MN垂直平分线AB,AD=BD, ABD=A=50, DBC=ABCABD=6550=15. 故答案为:15.【考点】考查等腰三角形的性质,线段垂直平分线的性质,掌握垂直平分线的性质是解题的关键.三、解答题1、 (1)见解析(2)【解析】【分析】(1)分别以B、C为圆心,大于BC
17、为半径作弧,两弧交于点E,连接AE交BC于D,则AD就是ABC的高;(2)由ADBC可知,AC是经过A,C,D三点的圆的直径,根据垂径定理可知CD=BC=4,由勾股定理可求AC的长,进而可求半径(1)解:作图如图:(2)解:AB=AC,ADBCAD是ABC的中线BD=CD= AC= ADC=90AC是经过A,C、D三点的圆的直径半径r= 故答案为:【考点】本题考查了基本作图,等腰三角形的性质-“三线合一”,解题的关键是熟知等腰三角形的“三线合一”性质2、(1)证明见解析;(2)=80【解析】【分析】(1)利用已知条件和等腰三角形的性质证明,根据全等三角形的性质即可证明;(2)根据三角形内角和定
18、理得B=50,所以C=50,在ABC中利用三角形内角和定理即可求解【详解】解:(1)证明:点D为BC的中点,BD=CD,DEB=DFC=90在BDE和CDF中,(2)B=180-(BDE+BED)=50,C=50,在ABC中,=180-(B+C)=80,故=80【考点】本题考查等腰三角形的性质、全等三角形的判定与性质和三角形内角和定理,熟练掌握等腰三角形的性质并灵活应用是解题的关键3、 (1)见解析(2)等腰三角形,证明见解析【解析】【分析】(1)利用HL公理证明 RtABCRtDCB ;(2)利用RtABCRtDCB证明ACBDBC,从而证明OBC是等腰三角形.(1)证明:在ABC和DCB中
19、,AD90ACBD,BC为公共边,RtABCRtDCB(HL);(2)OBC是等腰三角形,证明:RtABCRtDCB,ACBDBC,OBOC,OBC是等腰三角形【考点】此题主要考查斜边直角边判定两个直角三角形全等和等腰三角形的判定与性质,熟练掌握斜边直角边等腰三角形的判定与性质是解题的关键4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明ABDEBD,得到DEB=BAD=108,进一步计算出DEC=CDE=72得到CD=CE即可证明【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:BD平分ABC,ABD=EBD, 在ABD和EBD中: ,ABDEBD
20、(SAS),DEB=BAD=108,DEC=180-108=72,又AB=AC,C=ABC=(180-108)2=36,CDE=180-C-DEC=180-36-72=72,DEC=CDE,CD=CE,BC=BE+CE=AB+CD【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法5、 (1) 65;(2) 25【解析】【分析】(1)先根据直角三角形两锐角互余求出ABC=90A=50,由邻补角定义得出CBD=130再根据角平分线定义即可求出CBE=CBD=65;(2)先根据直角三角形两锐角互余的性质得出CEB=9065=25,再根据平行线的性质即可求出F=CEB=25【详解】(1)在RtABC中,ACB=90,A=40,ABC=90A=50,CBD=130BE是CBD的平分线,CBE=CBD=65;(2)ACB=90,CBE=65,CEB=9065=25DFBE,F=CEB=25【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义掌握各定义与性质是解题的关键