收藏 分享(赏)

基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx

上传人:a**** 文档编号:958557 上传时间:2025-12-19 格式:DOCX 页数:22 大小:457.75KB
下载 相关 举报
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第1页
第1页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第2页
第2页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第3页
第3页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第4页
第4页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第5页
第5页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第6页
第6页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第7页
第7页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第8页
第8页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第9页
第9页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第10页
第10页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第11页
第11页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第12页
第12页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第13页
第13页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第14页
第14页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第15页
第15页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第16页
第16页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第17页
第17页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第18页
第18页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第19页
第19页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第20页
第20页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第21页
第21页 / 共22页
基础强化人教版八年级数学上册第十一章三角形重点解析试题(解析版).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版八年级数学上册第十一章三角形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD2、下列说法中错误的是( )

2、A三角形的一个外角大于任何一个内角B有一个内角是直角的三角形是直角三角形C任意三角形的外角和都是D三角形的中线、角平分线,高线都是线段3、如图,AE是的中线,已知,则BD的长为A2B3C4D64、三角形的三条高所在直线的交点一定在A三角形的内部B三角形的外部C三角形的内部或外部D三角形的内部、外部或顶点5、已知一个多边形的每一个内角都比它相邻的外角的4倍多30,这个多边形是()A十边形B十一边形C十二边形D十三边形6、若一个正多边形的一个外角是60,则这个正多边形的边数是()A10B9C8D67、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A

3、重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D38、如图,ABCD,1=45,3=80,则2的度数为()A30B35C40D459、如图,、是的外角角平分线,若,则的大小为()ABCD10、如图,中,是延长线上一点,且,则的度数是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BP是ABC中ABC的平分线,CP是ACB的外角的平分线,如果ABP20,ACP50,则P_ 2、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_3、在ABC中,将B、C按如图方式折叠,点B、C均落于边BC上一点G处,

4、线段MN、EF为折痕若A80,则MGE_4、图中A+B+C+D+E+F+G=_5、如图,在中,点E是AC的中点,BE、AD交于点F,四边形DCEF的面积的最大值是_三、解答题(5小题,每小题10分,共计50分)1、小宋对三角板在平行线间的摆放进行了探究(1)如图(1),已知,小宋把三角板的直角顶点放在直线上若,直接写出的度数;若,直接写出的度数(用含的式子表示)(2)如图(2),将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30角的直角三角板的直角顶点与45角的顶点重合于点,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的另一个顶点在纸条的另一边上,求

5、的度数2、小王准备用一段长30米的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?请说明理由.3、请阅读以下材料,并完成相应任务:斐波那契(约1170 1250)是意大利数学家,他研究了一列非常奇妙的数:0,1,1,2,3,5,8,13,21,34,55,89,144,这列数,被称为斐波那契数列,其特点是从第3项开始,每一项都等于前两项之和斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用(1)填写下表并写出通过填表你发现的规律:项第2项第3项第4项第5

6、项第6项第7项第8项第9项这一项的平方11492564441这一项的前后两项的积0231024 168442规律: ;(2)现有长为15 cm的铁丝,要截成n(n 2)小段,每段的长度不小于1 cm,如果其中任意三小段都不能拼成三角形,则n的最大值为 _ ,所有小段的长度为 _ 4、已知一个多边形每个内角都比它相邻外角大60(1)求这个多边形的内角和;(2)求这个多边形所有对角线的条数5、一个正多边形的周长为,边长为,一个外角为(1)若,求的值;(2)若,求的值-参考答案-一、单选题1、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分

7、,设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键2、A【解析】【分析】根据三角形的性质判断选项的正确性【详解】A选项错误,钝角三角形的钝角的外角小于内角;B选项正确;C选项正确;D选项正确故选:A【考点】本题考查三角形的性质,解题的关键是掌握三角形的各种性质3、A【解析】【详解】试题解析:AE是ABC的中线,EC=4,BE=EC=4,DE=2,BD=BE-DE=4-2=2故选A4、D【解析】【分析】根据高的概念知:不同形状的三角形的高所在直线的交点位置不同锐角三角形的三条

8、高都在内部,交点在其内部;直角三角形的三条高中,两条就是直角边,第三条在内部,交点是直角顶点;钝角三角形有两条在外部,一条在内部,所在直线的交点在外部【详解】A. 直角三角形的三条高的交点是直角顶点,不在三角形的内部,错误;B. 直角三角形的三条高的交点是直角顶点,不在三角形的外部,错误;C. 直角三角形的三条高的交点是直角顶点,既不在三角形的内部,又不在三角形的外部,错误;D. 锐角三角形的三条高的交点在其内部;直角三角形的三条高的交点是直角顶点;钝角三角形的三条高所在直线的交点在其外部,正确.故选D.【考点】此题考查三角形的角平分线、中线和高,解题关键在于掌握其性质定义性质.5、C【解析】

9、【分析】首先设多边形的每一个外角为x,则内角为(4x+30),根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360外角的度数可得边数【详解】解:设外角为x,由题意得:x+4x+30=180,解得:x=30,36030=12,这个多边形是十二边形故选:C【考点】本题主要考查多边形内角与外角的知识点,解题的关键是内角与相邻的外角是互补关系,构建方程求解6、D【解析】【分析】根据多边形的外角和等于360计算即可【详解】解:360606,即正多边形的边数是6故选:D【考点】本题考查了多边形的外角和定理,掌握多边形的外角和等于360,正多边形的每个外角都相等是解

10、题的关键7、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键8、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答

11、9、B【解析】【分析】首先根据三角形内角和与P得出PBC+PCB,然后根据角平分线的性质得出ABC和ACB的外角和,进而得出ABC+ACB,即可得解.【详解】PBC+PCB=180-P=180-60=120、是的外角角平分线DBC+ECB=2(PBC+PCB)=240ABC+ACB=180-DBC+180-ECB=360-240=120A=60故选:B.【考点】此题主要考查角平分线以及三角形内角和的运用,熟练掌握,即可解题.10、C【解析】【分析】根据三角形的外角性质求解 【详解】解:由三角形的外角性质可得:ACD=B+A,A=ACD-B=130-55=75,故选C【考点】本题考查三角形的外角

12、性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键二、填空题1、30【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出P的度数【详解】解:BP是ABC中ABC的平分线,CP是ACB的外角的平分线,ABPCBP20,ACPMCP50,PCM是BCP的外角,PPCMCBP502030,故答案为:30【考点】本题考查了角平分线的性质及三角形外角的性质,熟练掌握上述知识点是解题的关键2、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点,、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有

13、关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大3、80【解析】【分析】由折叠的性质可知:BMGB,CEGC,根据三角形的内角和为180,可求出BC的度数,进而得到MGBEGC的度数,问题得解【详解】解:线段MN、EF为折痕,BMGB,CEGC,A80,BC18080100,MGBEGCBC100,MGE18010080,故答案为:80【考点】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,解题的关键是利用整体思想得到MGBEGC的度数4、540【解析】【分析】根据三

14、角形外角的性质可得,1=C+D,2=E+F,再根据五边形内角和解答即可【详解】解:1=C+D,2=E+F,A+B+C+D+E+F+G=A+B+1+2+G=540故答案为:540【考点】本题考查了三角形外角的性质和五边形内角和利用三角形内角与外角的关系把所求的角的度数归结到五边形中,利用五边形的内角和定理解答5、【解析】【分析】如图,连接CF,设SBFD=a,根据,点E是AC的中点可分别表示出S四边形DCEF与SABC,根据ABAC时SABC最大,即可得答案【详解】解:如图,连接CF,设SBFD=a,点E是AC的中点,SCDF=3SBDF=3a,SBCE=SBAE,SCFE=SAFE,SABF=

15、SCBF=SBDF+SCDF=4a,SABD=SABF+SBDF=5a,SADC=3SABD=15a,SABC=SABD+SADC=20a,SCFE=(SADC-SCDF)=6a,S四边形DCEF=SCDF+SCFE=9a,S四边形DCEF=SABC,AB=6,AC=8,AC边上的高的最大值为6,ABAC时SABC最大,即S四边形DCEF的值最大,S四边形DCEF的最大值=SABC=68=,故答案为:.【考点】本题考查三角形的面积及中线的性质,等高的三角形面积比等于它们的底边的比;三角形的中线把三角形分成两个面积相等的两个三角形;熟练掌握相关性质是解题关键三、解答题1、 (1)130,(90+

16、m)(2)15【解析】【分析】(1)根据两直线平行同旁内角互补,以及平角的定义来解决此题;(2)如图,先由两直线平行同旁内角互补得出DBA+FCA=180,再根据三角板中各角的度数计算拼接后图形中有关角的度数,再通过三角形内角和等于180度计算即可(1)解:,2+3=180,由题意和图知,1+3=90,1=402=180-(90-1)=90+1=90+40=130;若,那么2=(90+m)(2)解:如图,把图中各点标上字母,延长CA交直线a于点B,由题意知,DBA+FCA=180,FCA=60,DBA=120,DAE=45,FAC=90,BAD=180-DAE-FAC=45在中,1+DBA+B

17、AD=180,1=180-45-120=15;【考点】此题考查了平行线的性质和三角板中的角度计算问题,解题的关键是数形结合2、(1)(283a);(2)不可以,理由见解析.【解析】【分析】(1)根据“第二条边长只能是第一条边长的2倍多2米”表示出第二条边长,然后再根据总长即可表示出第三条边长;(2)若第一条边长为7米,分别求出第二条边长和第三条边长,判断是否能构成三角形即可.【详解】解:(1)第二条边长只能是第一条边长的2倍多2米,第一条边长为a米第二条边长为(2a+2)米,由题意可知:第三条边长为30a(2a+2)=(283a)米;(2)若a=7,则第二条边长为(27+2)=16米,第三条边

18、长为(2837)=7米7716此时不能构成三角形,第一条边长不可以为7米.【考点】此题考查的是用代数式表示实际意义和三角形的三边关系,掌握实际问题中各个量之间的关系和用三边关系判断三条线段是否能构成三角形是解决此题的关键.3、 (1)169,65,从第2项起,偶数项的平方比这一项的前后两项的积大1,奇数项的平方比这一项的前后两项的积小1(2)5;1cm、1cm、2cm、3cm、8cm【解析】【分析】(1)观察数列得出第6项为5,第7项为8,第8项为13,可求第8项平方,根据第7项的前后两项分别为5与13,其积为513可得第7项,根据表格观察发现从第2项起,偶数项的平方比这一项的前后两项的积大1

19、,奇数项的平方比这一项的前后两项的积小1即可;(2)根据三角形不能构成的条件是存在两边之和不超过第三边,利用斐波那契数列先截取1cm,1cm,2cm,再截取第4段3cm,利用线段和差求出剩余的一段8cm讨论即可(1)解:数列中第8项为13,这项的平方为169,第6项为5,第8项为13,第7项的前后两项的积为513=65,填表项第2项第3项第4项第5项第6项第7项第8项第9项这一项的平方11492564169441这一项的前后两项的积023102465168442根据表观察发现从第2项起,偶数项的平方比这一项的前后两项的积大1,奇数项的平方比这一项的前后两项的积小1,故答案为:169,65,从第

20、2项起,偶数项的平方比这一项的前后两项的积大1,奇数项的平方比这一项的前后两项的积小1;(2)解:根据三角形三边关系任意两边之和大于第三边,不能构成三角形条件是存在两边之和不超过第三边,先截取1cm,1cm,2cm,1+1=2,不能构成三角形,再取3cm此时四段1cm,1cm,2cm,3cm,任意三段都不能构成三角形,1+1+2+3=7cm,15-7=8cm,如果8cm分成任意不小于1的两段=1+7=2+6=3+5=4+4都能与前四段构成某个三角形分成1cm与7cm ,1+11,构成等边三角形,分成2cm与6cm,2+23,构成等腰三角形,分成3cm与5cm,3+35,构成等腰三角形,分成4c

21、m与4cm,3+44,构成等腰三角形,15cm的线段最多分成5段分别为1cm,1cm,2cm,3cm,8cm,n最多=5,所有小段长度为1cm、1cm、2cm、3cm、8cm,故答案为5;1cm、1cm、2cm、3cm、8cm【考点】本题考查斐波那契数列的应用,认真阅读,领会含义,应用斐波那契数列解决问题,三角形三边关系,掌握斐波那契数列,三角形三边关系是解题关键4、 (1)720(2)9【解析】【分析】(1)设这个多边形为n边形,根据多边形外角和为360度,结合条件一个多边形每个内角都比它相邻外角大60列出方程求解即可;(2)根据n边形一个顶点有(n-3)条对角线求解即可(1)解:设这个多边

22、形为n边形,由题意得:,解得,这个多边形的内角和为(2)解:由(1)得这个多边形为六边形,从六边形的一个顶点出发一共有6-3=3条对角线,这个多边形所有对角线的条数为条【考点】本题主要考查了多边形内角和与外角和问题,多边形对角线问题,熟练掌握多边形内角和与外角和以及多边形对角线的知识是解题的关键5、(1)36;(2)5【解析】【分析】(1)根据周长公式,可得多边形的边数,再根据多边形的外角和,可得答案(2)根据多边形的外角和,可得多边形的边数,根据周长公式,可得答案【详解】解:(1)正多边形的周长为,边长为,正多边形的边数=606=10,正多边形的一个外角为b=36010=36,(2)正多边形的一个外角为,正多边形的边数=36030=12,正多边形的周长为,边长为, a=6012=5,【考点】本题考查了多边形的外角和以及正多边形的性质,利用多边形的外角和得出多边形的边数是解题关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1