1、人教版八年级数学上册第十一章三角形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,C=90,点D在AC上,DEAB,若CDE=165,则B的度数为()A15B55C65D752
2、、如图,在中,平分,则的度数是()ABCD3、如图,中,是延长线上一点,且,则的度数是()ABCD4、如图,ABC的角平分线AD,中线BE交于点O,则结论:AO是ABE的角平分线;BO是ABD的中线其中()A、都正确B、都不正确C正确不正确D不正确,正确5、如图4-2,作出正五边形的所有对角线,得到一个五角星,那么,在五角星含有的多边形中()A只有三角形B只有三角形和四边形C只有三角形、四边形和五边形D只有三角形、四边形、五边形和六边形6、若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D487、下列四个选项中不
3、是命题的是()A对顶角相等B过直线外一点作直线的平行线C三角形任意两边之和大于第三边D如果,那么8、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D549、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD10、如图,AOB是一钢架,AOB15,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH添的钢管长度都与OE相等,则最多能添加这样的钢管()根A2B4C5D无数第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,为等腰直角三角形,将按如图方式进行折叠,使点A与边上的点F重合,折痕分别与交于点D,点E下
4、列结论:;其中一定正确的结论序号为_2、如图,中,点,分别在,上,与交于点,若,则的面积_3、如图,伸缩晾衣架利用的几何原理是四边形的_4、如图,直线AB、CD相交于点O,BOC,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G若MEFnCEF,NFE(12n)AFE,且EGF的度数与AFE的度数无关,则EGF=_(用含有的代数式表示)5、如图,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:平分;与互余的角有个;若,则其中正确的是_(请把正确结论的序号都填上)三、解答题(5小题,每小题10分,共计50分)1、在一个各内角都相等的多边形中,每一个内角
5、都比相邻外角的倍还大(1)求这个多边形的边数;(2)若将这个多边形剪去一个角,剩下多边形的内角和是多少?2、已知:在中,平分,平分,、交于点(1)如图1:若,求的度数;(2)如图2:点是延长线上一点,连接、,求证:;(3)如图3:在(2)的条件下,过点作,交于点,点在线段的延长线上,连接,若,求的度数3、如图,中,、是角平分线,它们相交于点O,是高,求及的度数4、如图,三角形ABC的三个顶点坐标分别是、(1)将三角形ABC向下平移3个单位长度得到三角形;(2)写出的坐标;(3)求出三角形ABC的面积5、已知a,b,c是的三边长,且,若三角形的周长是小于18的偶数(1)求c的值;(2)判断的形状
6、-参考答案-一、单选题1、D【解析】【分析】根据邻补角定义可得ADE=15,由平行线的性质可得A=ADE=15,再根据三角形内角和定理即可求得B=75【详解】解:CDE=165,ADE=15,DEAB,A=ADE=15,B=180CA=1809015=75,故选D【考点】本题考查了平行线的性质、三角形内角和定理等,熟练掌握平行线的性质以及三角形内角和定理是解题的关键2、C【解析】【分析】在中,利用三角形内角和为求,再利用平分,求出的度数,再在利用三角形内角和定理即可求出的度数【详解】在中,平分故选C【考点】本题考查了三角形的内角和和角平分线的性质,熟练应用性质是解决问题的关键3、C【解析】【分
7、析】根据三角形的外角性质求解 【详解】解:由三角形的外角性质可得:ACD=B+A,A=ACD-B=130-55=75,故选C【考点】本题考查三角形的外角性质,熟练掌握三角形的外角性质定理并能灵活运用是解题关键4、C【解析】【分析】根据三角形的角平分线的定义,三角形的中线的定义可知三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,连接一个顶点和它所对边的中点的线段叫做三角形的中线【详解】解:AD是三角形ABC的角平分线,则是BAC的角平分线,所以AO是ABE的角平分线,故正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的中点,故错误故选
8、:C【考点】本题考查了三角形的中线,角平分线的定义,理解定义是解题的关键5、C【解析】【分析】由正五边形的性质和五角星的特点得出五角星含有的多边形中,有三角形、四边形和五边形.【详解】解:根据题意得:在五角星含有的多边形中,有三角形、四边形和五边形,故选C【考点】本题考查了正五边形的性质、五角星的特点,熟练掌握正五边形的性质是解决问题的关键6、B【解析】【分析】解方程得出x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,即可得出菱形ABCD的周长【详解】解:如图所示:四边形ABCD是菱形,ABBCCDAD,x210x+240,因式分解得:(x4)(x6
9、)0,解得:x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,菱形ABCD的周长4AB24故选:B【考点】本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键7、B【解析】【分析】判断一件事情的语句,叫做命题根据定义判断即可【详解】解:由题意可知,A、对顶角相等,故选项是命题;B、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C、三角形任意两边之和大于第三边,故选项是命题;D、如果,那么,故选项是命题;故选:B【考点】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称
10、为假命题;经过推理论证的真命题称为定理注意:疑问句与作图语句都不是命题8、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.9、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题
11、关键10、C【解析】【详解】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的0BQ的度数(必须90),就可得出钢管的根数详解:如图所示,AOB=15,OE=FE,GEF=EGF=152=30,EF=GF,所以EGF=30GFH=15+30=45GH=GFGHF=45,HGQ=45+15=60GH=HQ,GQH=60,QHB=60+15=75,QH=QBQBH=75,HQB=180-75-75=30,故OQB=60+30=90,不能再添加了故选C点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答二、填空题1、#【解析】【分析
12、】由折叠性质可得A=3,ADE=FDE,AED=FED,再由等腰直角三角形性质得A=B=3= 45,即可得到3+B= 90;设ADE=FED=,AED=FED=,可得1 +ADE+FED=1 + 2=180,2+AED+FED=2+ 2= 180,A+= 180,即可推导出1 +2=90;1与2不一定相等,DF与AB不一定平行,即可确定答案【详解】解:由折叠的性质,A=3,ADE=FDE,AED =FED,ABC为等腰直角三角形,C = 90,A=B=3= 45,3+B= 90,故选项正确;设ADE=FED=,AED=FED=,1 +ADE+FED=1 + 2=180,2+AED+FED=2+
13、 2= 180,A+= 180,由得:,1 +2=90,故正确;1 +2=90,1与2不一定相等,故不一定正确;点F是边上的一点,不固定,DF与AB不一定平行,故不一定正确故答案为:【考点】本题考查了折叠的性质,平行线的判定,三角形内角和定理等知识,正确的识别图形是解题的关键2、7.5【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解【详解】如下图所示,连接, ,设, ,由,可得, ,解得 , 故答案为:7.5【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键3、灵活性【解析】【
14、分析】根据四边形的灵活性,可得答案【详解】我们常见的晾衣服的伸缩晾衣架,是利用了四边形的灵活性,故答案为灵活性【考点】此题考查多边形,解题关键在于掌握四边形的灵活性.4、#3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解【详解】解:CEFAFE+BOC,BOC,CEF+AFE,MEFnCEF,MEFn(+AFE),EGFMEFNFE,EGFn(+AFE)(12n)AFEn+(3n1)AFE,EGF的度数与AFE的度数无关,3n10,即n,EGF;故答案为:【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解EGF的度数与AF
15、E的度数无关的含义5、【解析】【分析】由BDBC及BD平分GBE,可判断正确;由CB平分ACF、AECF及的结论可判断正确;由前两个的结论可对作出判断;由AECF及ACBG、三角形外角的性质可求得BDF,从而可对作出判断【详解】BD平分GBEEBD=GBD=GBEBDBCGBD+GBC=CBD=90DBE+ABC=90GBC=ABCBC平分ABG故正确CB平分ACFACB=GCBAECFABC=GCBACB=GCB=ABC=GBCACBG故正确DBE+ABC=90,ACB=GCB=ABC=GBC与DBE互余的角共有4个 故错误ACBG,A=GBE=AECFBGD=180GBE=180BDF=G
16、BD+BGD=故错误即正确的结论有故答案为:【考点】本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键三、解答题1、(1)9;(2)1080或1260或1440【解析】【分析】(1)设多边形的一个外角为,则与其相邻的内角等于,根据内角与其相邻的外角的和是 列出方程,求出的值,再由多边形的外角和为,求出此多边形的边数为;(2)剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,根据多边形的内角和定理即可求出答案【详解】解:(1)设每一个外角为,则与其相邻的内角等于, ,即多边形的每个外角为,多边形的外角和为,多边形的外角个数
17、为:,这个多边形的边数为;(2)因为剪掉一个角以后,多边形的边数可能增加了1条,也可能减少了1条,或者不变,若剪去一角后边数减少1条,即变成边形,内角和为,若剪去一角后边数不变,即变成边形,内角和为,若剪去一角后边数增加1,即变成边形,内角和为,将这个多边形剪去一个角后,剩下多边形的内角和为或或 【考点】本题考查了多边形的内角和定理,外角和定理,多边形内角与外角的关系,熟练掌握相关知识点是解题的关键2、 (1)(2)证明见解析(3)64【解析】【分析】(1)先证明,再求解,再利用三角形的内角和定理可得答案;(2)利用三角形的外角的性质证明,从而可得结论;(3)先证明,设,求解,证明,再列方程求
18、解即可(1)证明:、分别平分与,在中,(2)证明:是得一个外角,(3)解:, ,平分,平分,设, 而 【考点】本题考查的是平行线的性质,三角形的角平分线的定义,三角形的外角的性质,三角形的内角和定理的应用,方程思想的应用,熟练的运算三角形的内角和定理与外角的性质建立角与角之间的关系是解本题的关键3、DAC=40,BOA=115【解析】【分析】由直角三角形两锐角互余知DAC=40度,根据三角形内角和定理得CAB+ABC= 130,AF、BE是角平分线,则BAO+ABO=(CAB +ABC)=65,从而得出答案【详解】解:AD 是高,C=50ADC= 90, DAC= 90-50=40,C= 50
19、,CAB+ABC = 130,AF、BE是角平分线,BAO+ABO=(CAB +ABC)= (180-50)=130=65,BOA= 180- 65 = 115【考点】本题主要考查了高的概念、直角三角形的性质、三角形内角和定理,角平分线的定义,做题的关键是角平分线性质的运用4、 (1)见详解(2)(3)【解析】【分析】(1)将ABC各顶点向左平移3个单位长度,再首尾顺次连接即可得;(2)根据平移方式得到坐标;(3)利用割补法计算即可(1)解:三角形ABC向下平移3个单位长度得到三角形先将点A、B、C向下平移3个格,得点A1、B1、C1,顺次连结则为所求;(2)解:、,三角形ABC向下平移3个单
20、位长度得到三角形横坐标不变,纵坐标减3,即,,(3)解:将ABC补成正方形AA1EF,=【考点】本题主要考查作图-平移变换,割补法求三角形面积,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点5、(1)4或6;(2)等腰三角形【解析】【分析】(1)根据三角形三边关系和周长的最小值列式计算即可;(2)根据(1)可得c,根据已知条件得到a=c,即可得到结果;【详解】(1)的周长为,且周长小于18,即,又三角形的周长是小于18的偶数,即为偶数,c为小于8的偶数,则c可以是2,4,6当时,不能构成三角形,故舍去,c的值为4或6(2)由(1)得当时,有;当时,有,为等腰三角形【考点】本题主要考查了三角形三边关系及三角形形状判断的知识点,准确理解是解题的关键