1、人教版八年级数学上册第十一章三角形定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使
2、其形状稳定,那么至少需要添加()个螺栓A1B2C3D42、如图,在RtABF中,F=90,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CDAC交AB于点D,过点C作CEAB交AB于点E,则下列说法中,错误的是()AABC中,AB边上的高是CEBABC中,BC边上的高是AFCACD中,AC边上的高是CEDACD中,CD边上的高是AC3、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D544、若一个正n边形的每个内角为144,则这个正n边形的所有对角线的条数是()A9B12C35D405、如图,AOB是一钢架,AOB15,为使钢架更加牢固
3、,需在其内部添加一些钢管EF、FG、GH添的钢管长度都与OE相等,则最多能添加这样的钢管()根A2B4C5D无数6、下列长度的三条线段能组成三角形的是()A5cm2cm3cmB5cm2cm2cmC5cm2cm4cmD5cm12cm6cm7、如图,足球图片正中的黑色正五边形的内角和是()A180B360C540D7208、若正多边形的一个外角是,则这个正多边形的内角和是()ABCD9、已知一个多边形的每一个内角都比它相邻的外角的4倍多30,这个多边形是()A十边形B十一边形C十二边形D十三边形10、下面四个图形中,线段BE能表示三角形ABC的高的是()ABCD第卷(非选择题 70分)二、填空题(
4、5小题,每小题4分,共计20分)1、若一个多边形的内角和与外角和之比是的52,则这个多边形的边数是_2、如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则BED=_3、如图所示,在四边形ABCD中,ADAB,C=110,它的一个外角ADE=60,则B的大小是_4、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_5、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,点E在DA的延长线上,CE平分BCD,BCD=2E,(1)求证:BCDE;(2)点F在线段CD上,若CBF=ABD=40,BFC=ADB,
5、求BDC的度数2、等腰三角形一腰上的中线把该三角形的周长分为13.5 cm和11.5 cm两部分,求这个等腰三角形各边的长莉莉的解答过程如下:设在中,BD是中线中线将三角形的周长分为13.5cm和11.5 cm,如图所示,解得,三角形三边的长为9cm,9cm,7cm请问莉莉的解法正确吗?如果不正确,请给出理由3、小明在学习中遇到这样一个问题:如图,在ABC 中,AD 平分BAC,点 P 为线段 AD 上的一个动点,PEAD 交 BC 的延长线于点 E猜想B、ACB、E 的数量关系(1)小明阅读题目后,没有发现数量关系与解题思路,于是尝试从具体的情况开始探索,若B35,ACB85,则E= (2)
6、小明继续探究,设B,ACB(),当点 P 在线段 AD 上运动时,求E 的大小(用含、的代数式表示)4、如图,在ABC中,A=DBC=36,C=72求1,2的度数5、如图,ABC中,BAC90,点D是BC上的一点,将ABC沿AD翻折后,点B恰好落在线段CD上的B处,且AB平分CAD求BAB的度数-参考答案-一、单选题1、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键2、C【解析】【
7、分析】根据三角形某边上的高的定义(从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高),依次检验四个选项,即可得到答案【详解】解:根据三角形某边上的高的定义验证:A. ABC中,AB边上的高是CE,故A正确;B. ABC中,BC边上的高是AF,故B正确;C. ACD中,AC边上的高是CD,故C错误;D. ACD中,CD边上的高是AC,故D正确;故选C【考点】本题考查了三角形某边上的高的定义;从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,掌握此定义是解题的关键3、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1
8、510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.4、C【解析】【分析】先根据内角的度数求得外角的度数,进而求得多边形的边数,根据对角线的条数为即可求得答案【详解】解:一个正n边形的每个内角为144,则每个外角为,故,则对角线的条数为,故选C【考点】本题考查了正多边形的内角与外角的关系,求正多边形的对角线条数,求得是解题的关键5、C【解析】【详解】分析:因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的0BQ的度数(必须90),就可得出钢管的根数详
9、解:如图所示,AOB=15,OE=FE,GEF=EGF=152=30,EF=GF,所以EGF=30GFH=15+30=45GH=GFGHF=45,HGQ=45+15=60GH=HQ,GQH=60,QHB=60+15=75,QH=QBQBH=75,HQB=180-75-75=30,故OQB=60+30=90,不能再添加了故选C点睛:根据等腰三角形的性质求出各相等的角,然后根据三角形内角和外角的关系解答6、C【解析】【分析】根据三角形的三边关系进行分析判断【详解】解:根据三角形任意两边的和大于第三边,得A、325,不能组成三角形,不符合题意;B、2245,不能组成三角形,不符合题意;C、4265,
10、能够组成三角形,符合题意;D、561112,不能组成三角形,不符合题意故选:C【考点】本题考查了能够组成三角形三边的条件,解题的关键是用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形7、C【解析】【分析】根据多边形内角和公式即可求出结果【详解】解:黑色正五边形的内角和为:,故选C【考点】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式8、B【解析】【分析】利用多边形外角求得该多边形的边数,再利用多边形内角和公式即可解答【详解】解:多边形外角和为360,故该多边形的边数为36060=6;多边形内角和公式为:(n-2)180=(6-2)180=720故选:B【考点】本题考
11、查了多边形外角和以及多边形内角和公式,熟练掌握相关公式是解题关键9、C【解析】【分析】首先设多边形的每一个外角为x,则内角为(4x+30),根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360外角的度数可得边数【详解】解:设外角为x,由题意得:x+4x+30=180,解得:x=30,36030=12,这个多边形是十二边形故选:C【考点】本题主要考查多边形内角与外角的知识点,解题的关键是内角与相邻的外角是互补关系,构建方程求解10、B【解析】【分析】根据三角形的高的定义(从三角形一个顶点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称为三角形这条
12、边上的高)即可得【详解】解:由三角形的高的定义可知,只有选项B中的线段能表示三角形的高,故选:B【考点】本题考查了三角形的高,熟记定义是解题关键二、填空题1、7【解析】【分析】设这个多边形的边数是n,则内角和为,然后根据外角和是360度,即可求得边数【详解】解:设这个多边形的边数是n,则解得;故答案为:7【考点】本题考查了多边形的计算,理解多边形的外角和是360度,外角和不随边数的变化而变化是关键2、45【解析】【详解】正六边形ADHGFE的内角为120,正方形ABCD的内角为90,BAE=360-90-120=150,AB=AE,BEA=(180-150)2=15,DAE=120,AD=AE
13、,AED=(180-120)2=30,BED=15+30=453、40【解析】【详解】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360进行求解即可得.【详解】ADE=60,ADC=120,ADAB,DAB=90,B=360CADCA=40,故答案为40【考点】本题考查了多边形的内角和外角,掌握四边形的内角和等于360、外角的概念是解题的关键4、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,内角和是720度,这个多边形是六边形故答案为:6【考点】本题主要考查了多边形的内角
14、和定理与外角和定理,熟练掌握定理是解题的关键5、10【解析】【分析】在EFD中,由三角形的外角性质知:HED=AEC=B+BAC,所以B+BAC+EDH=90;联立ABC中,由三角形内角和定理得到的式子,即可推出EDH=(C-B)【详解】解:由三角形的外角性质知:HED=AEC=B+BAC,故B+BAC+EDH=90,ABC中,由三角形内角和定理得:B+BAC+C=180,即:C+B+BAC=90,-,得:EDH=(C-B)=(50-30)=10故答案为:10【考点】本题考查三角形内角和定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明EFD=(C-B)三、解答题1、 (1)见解
15、析(2)40【解析】【分析】(1)只需要证明BCE=E,即可得到;(2)先证明BFC=CBF+DBF,再由BFC是BFD的外角,得到BFC=DBF+BDC,即可推出BDC=CBF=40(1)解:CE平分BCD,BCD=2BCE,BCD=2E,BCE=E,;(2)解:,ADB=DBC,DBC=CBF+DBF,ADB=CBF+DBF,BFC=ADB,BFC=CBF+DBF,BFC是BFD的外角,BFC=DBF+BDC,DBF+BDC=CBF+DBF,BDC=CBF=40【考点】本题主要考查了平行线的性质与判定,三角形外角的性质,角平分线的定义,熟知平行线的性质与判定条件是解题的关键2、不正确,见解
16、析【解析】【分析】根据AB和BC的大小关系分类讨论,然后根据三角形的周长差即可分别求出对应的AB和BC,从而得出结论【详解】解:莉莉的解法不正确,理由如下:假设在中,BD是中线当时,解得,当时,解得综上,这个三角形三边的长分别为9 cm,9 cm,7 cm或【考点】这道题是用文字叙述的形式给出的,没有图形,也没有字母,因此,可以先根据文字叙述画出图形,标注字母,利用图形减小题目难度,由于腰和底边不相等造成一腰上的中线把三角形的周长分成两个不相等的部分,解题关键是既要考虑到腰比底边长,又要考虑到底边比腰长3、 (1)25(2)(-);【解析】【分析】(1)根据三角形内角和180,角平分线的定义,
17、三角形外角的性质即可解答;(2)结合(1)的解答,用代数式表示角度进行角的计算,即可解答;(1)解:如图,设AC,PE交于点F,ABC中,B=35,ACB=85,BAC=180-35-85=60,AD平分BAC,则DAC=BAC=30,APF中,APF=90,PAF=30,PFA=60,CFE=PFA=60,ACB是CEF的外角,ACB=E+CFE=85,E=25;(2)解:根据(1)可知:BAC=180-,DAC=90-,CFE=90-(90-)=+,E=ACB-CFE=-(+)=-=(-);【考点】本题考查了三角形内角和定理,角平分线的定义,直角三角形的两个锐角互余,三角形外角的性质;掌握
18、相关定理和性质是解题关键4、1=36,2=72【解析】【分析】在ABC和BDC中,根据三角形内角和定理,即可得出结论【详解】在ABC中,ABC=180AC=1803672=72,1=ABCDBC=7236=36;在BCD中,2=180DBCC=1803672=72【考点】本题考查了三角形的内角和定理,注意掌握数形结合思想的应用5、60【解析】【分析】由折叠和角平分线可求BAD=30,即可求出BAB的度数【详解】解:由折叠可知,BAD=BAD,AB平分CADBAC=BAD,BAD=BAC=BAD,BAC90,BAD=BAC=BAD=30,BAB=60【考点】本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质