1、人教版九年级数学上册第二十四章圆难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD2、已知O中最长的弦为8cm,则O的半径为()
2、cmA2B4C8D163、已知O的半径为4,点O到直线m的距离为d,若直线m与O公共点的个数为2个,则d可取()A5B4.5C4D04、已知扇形的圆心角为,半径为,则弧长为()ABCD5、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A丁丁B当当C一样高D不确定6、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D787、下列说法正确的是()近似数精确到十分位;在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角
3、”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D48、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2909、如图物体由两个圆锥组成,其主视图中,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A2BCD10、如图,ABC内接于O,A50E是边BC的中点,连接OE并延长,交O于点D,连接BD,则D的大小为()A55B65C60D75第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PA、PB切O于A、B两点,点C在O上,且P
4、C,则AOB_2、如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.3、若一个扇形的弧长是,面积是,则扇形的圆心角是_度4、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度5、如图,在一边长为的正六边形中,分别以点A,D为圆心,长为半径,作扇形,扇形,则图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,求该圆锥的母线长2、已知抛物线经过点(m,4),交x轴于A,B两点(A在B左边),交y轴于C点对于任意实数n,不等式恒成立(1)抛
5、物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D,使得BDC2BAC,若有求出点D的坐标,若没有,请说明理由;(3)将抛物线沿x轴正方向平移一个单位,把得到的图象在x轴下方的部分沿x轴向上翻折,图的其余部分保持不变,得到一个新的图象G,若直线y=x+b与新图象G有四个交点,求b的取值范围(直接写出结果即可)3、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数4、如图,内接于,则的直径等于多少?5、如图,四边形ABCD内接于O,AB为O的直径,过点C作CEAD交AD的延长线于点E,延长EC,AB交于点F,ECDBCF(1)求证
6、:CE为O的切线;(2)若DE1,CD3,求O的半径-参考答案-一、单选题1、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距2、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键3、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论【详解】直线m与O公共
7、点的个数为2个直线与圆相交d半径4故选D【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr直线l和O相切dr,直线l和O相离dr4、D【解析】【分析】根据扇形的弧长公式计算即可【详解】扇形的圆心角为 30 ,半径为 2cm ,弧长cm故答案为:D【考点】本题主要考查扇形的弧长,熟记扇形的弧长公式是解题的关键5、B【解析】【分析】由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,可得丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,由扇形的半径相等,即母线长相
8、等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,根据勾股定理由即,可得丁丁的h小于当当的h即可【详解】解:由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,,根据勾股定理由即,丁丁的h小于当当的h,由勾股定理可得当当做成的圆锥形的帽子更高一些故选:B【考点】本题考查扇形作圆锥帽子的应用,利用圆锥的母线底面圆的半径,和圆锥的高三者之间关系,根据勾股定理确定出当当的帽子高是解题关键6、C【解析】【分析】由点I
9、是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质7、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;
10、根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键8、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D9
11、02即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质9、D【解析】【分析】先证明ABD为等腰直角三角形得到ABD45,BDAB,再证明CBD为等边三角形得到BCBDAB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的
12、侧面积【详解】A90,ABAD,ABD为等腰直角三角形,ABD45,BDAB,ABC105,CBD60,而CBCD,CBD为等边三角形,BCBDAB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,下面圆锥的侧面积1故选D【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了等腰直角三角形和等边三角形的性质10、B【解析】【分析】连接CD,根据圆内接四边形的性质得到CDB180A130,根据垂径定理得到ODBC,求得BDCD,根据等腰三角形的性质即可得到结论【详解】解:连接CD,A50,C
13、DB180A130,E是边BC的中点,ODBC,BDCD,ODBODCBDC65,故选:B【考点】本题考查了圆内接四边形的性质,垂径定理,等腰三角形的性质等知识正确理解题意是解题的关键二、填空题1、120【解析】【分析】根据圆周角定理得到CAOB,根据切线的性质得到PAOPBO90,进而得出P+AOB180,根据题意计算,得到答案【详解】解:由圆周角定理得:CAOB,PA、PB切O于A、B两点,PAOPBO90,P+AOB180,PC,AOB+AOB180,AOB120,故答案为:120【考点】本题考查切线的性质以及圆周角定理,熟记由切线得垂直是解题的关键2、48【解析】【分析】连接OA,分别
14、求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72,AMN是正三角形,AOM=120,BOM=AOM-AOB=48,故答案为48点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键3、60【解析】【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可【详解】解:扇形的面积=6,解得:r=6,又=2,n=60故答案为:60【考点】此题考查了扇形的面积和弧长公式,解题的关键是掌握运算方法4、120【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形
15、全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、
16、弧、圆周角的关系需熟练掌握5、【解析】【分析】先利用正多边形内角和公式求得每个内角,再利用扇形面积公式求出扇形ABF、扇形DCE的面积,即可得出结果【详解】由正多边形每个内角公式可得该正六边形的每一个内角;,;则阴影部分面积为:【考点】本题考查了正多边形和圆、扇形面积计算等知识;掌握正多边形内角的计算公式和扇形面积公式是解题的关键三、解答题1、【解析】【分析】根据侧面展开图的弧长等于底面周长列方程即可【详解】解:圆锥的底面周长,由题意可得,解得,所以该圆锥的母线长为【考点】本题考查了圆锥的有关计算,解题关键是熟知圆锥的侧面展开图的弧长等于圆锥底面周长和圆锥母线等于圆锥侧面展开图半径,根据题意建
17、立方程2、10参考答案:1(1);(2)点D的坐标为(1,1);(3)【解析】【分析】(1)由不等式恒成立可得点(m,4)是抛物线的顶点坐标,求出,将点(t,4)代入求出t的值即可;(2)作线段BC的垂直平分线交对称轴于点D,交BC于E,则点D是ABC的外心,可得BDC2BAC,然后求出直线BC,直线DE的解析式即可解决问题;(3)作出图象G,求出直线y=x+b与图象G有三个交点时b的值,则根据图象可得直线y=x+b与图象G有四个交点时b的取值范围(1)解:抛物线的对称轴为,不等式恒成立,抛物线的顶点坐标为(m,4),将点(t,4)代入得:,解得:(舍去),抛物线解析式为:;(2)解:令,解得
18、:,A(1,0),B(3,0),由可得C(0,3),对称轴为,作线段BC的垂直平分线交对称轴于点D,交BC于E,E(,),抛物线对称轴是线段AB的垂直平分线,点D是ABC的外心,BDC2BAC,设直线BC的解析式为,代入B(3,0),C(0,3)得,解得:,直线BC的解析式为,设直线DE的解析式为,代入E(,)得,m0,直线DE的解析式为,当时,点D的坐标为(1,1);(3)解:图象G如图所示,由平移可知图象G过点(0,0),当直线y=x+b过点(0,0)时,b0,将抛物线沿x轴正方向平移一个单位后解析式为,沿x轴向上翻折后解析式为,由,得,整理得:,令,解得:,故若直线y=x+b与新图象G有
19、四个交点,b的取值范围为:【考点】本题考查了待定系数法的应用,二次函数的图象和性质,一次函数的图象和性质,三角形外心的性质,二次函数图象的平移及翻转等知识,熟练掌握数形结合思想的应用是解题的关键3、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题;(2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=C,P=C,1=P,CBPD;(2)CDAB,CEB=90,CBE=55,C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知
20、识4、12【解析】【分析】连接OB、OC,如图,利用圆周角定理得到BOC60,则可判断OBC为等边三角形,从而得到OB6【详解】解:连接OB、OC,如图,BOC2BAC23060,而OBOC,OBC为等边三角形,OBBC6,O的直径等于12故答案为:12【考点】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理,掌握这些知识点是解题关键5、(1)见解析;(2)O的半径是4.5【解析】【分析】(1)如图1,连接OC,先根据四边形ABCD内接于O,得,再根据等量代换和直角三角形的性质可得,由切线的判定可得结论;(2)如图2,过点O作于G,连接OC,OD,则,先根据三个角是直角的四边形是矩形得四边形OGEC是矩形,设O的半径为x,根据勾股定理列方程可得结论【详解】(1)证明:如图1,连接OC,四边形ABCD内接于O,又,OC是O的半径,CE为O的切线;(2)解:如图2,过点O作于G,连接OC,OD,则,四边形OGEC是矩形,设O的半径为x,RtCDE中,由勾股定理得,解得:,O的半径是4.5【考点】本题考查的是圆的综合,涉及到圆的切线的证明、勾股定理以及矩形的性质,熟练掌握相关性质是解决问题的关键