1、人教版九年级数学上册第二十四章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、丁丁和当当用半径大小相同的圆形纸片分别剪成扇形(如图)做圆锥形的帽子,请你判断哪个小朋友做成的帽子更高一些()A丁丁
2、B当当C一样高D不确定2、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm3、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD44、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直径为()ABC1D25、已知O中最长的弦为8cm,则O的半径为()cmA2B4C8D166、下列说法:(1)长度相等的弧是等弧;(2)弦不包括直径;(3)劣弧一定比优弧短;(4)直径是圆中最长的弦其中正确的有()A1个B2个C3个D4个7、已
3、知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()ABCD8、如图,点A,B,C,D,E是O上5个点,若ABAO2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()AB43C44D9、如图,在四边形ABCD中,则AB()A4B5CD10、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD第卷(非选择题 70分)二、填
4、空题(5小题,每小题4分,共计20分)1、如图,在矩形 中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接.在上取点,以点为圆心,长为半径作与相切于点.若,给出下列结论:是的中点;的半径是2; ;.其中正确的是_.(填序号)2、如图,从一块半径为的圆形铁皮上剪出一个圆周角为120的扇形,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_3、一个扇形的圆心角是120它的半径是3cm则扇形的弧长为_cm4、如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升_cm5、如图所示,AB、AC为O的两条弦,延长CA到点D,AD
5、=AB,若ADB=35,则BOC=_三、解答题(5小题,每小题10分,共计50分)1、如图,已知MAN,按下列要求补全图形(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)在射线AN上取点O,以点O为圆心,以OA为半径作O分别交AM、AN于点C、B;在MAN的内部作射线AD交O于点D,使射线AD上的各点到MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是 ,理论依据是 ;(2)若点E在射线AM上,且DEAM于点E,请判断直线DE与O的位置关系;(3)已知O的直径AB6cm,当弧BD的长度为 cm时,四边形OACD为菱形2、在平面直角坐标系中,对
6、于点,给出如下定义:当点满足时,称点Q是点P的等和点已知点(1)在,中,点P的等和点有_;(2)点A在直线上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点和线段MN,对于所有满足的点C,线段MN上总存在线段PC上每个点的等和点若MN的最小值为5,直接写出b的取值范围3、如图,是的直径,点是上一点,点是延长线上一点,是的弦,(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,请找出,之间的关系,并证明4、如图,为的直径,C为上一点,弦的延长线与过点C的切线互相垂直,垂足为D,连接(1)求的度数;(2)若,求的长5、(1)如图,在ABC中,AB=4,AC=3
7、,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由-参考答案-一、单选题1、B【解析】【分析】由图形可知
8、,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,可得丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,由扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,根据勾股定理由即,可得丁丁的h小于当当的h即可【详解】解:由图形可知,丁丁扇形的弧长大于当当扇形的弧长,根据弧长与圆锥底面圆的周长相等,丁丁剪成扇形做圆锥形的帽子的底面半径r大于当当剪成扇形做圆锥形的帽子的底面半径r,扇形的半径相等,即母线长相等R,设圆锥底面圆半径为r,母线为R,圆锥的高为h,,根据勾股定理由即,丁丁的h小于当当的h,由勾股定理可得当当做成的圆锥
9、形的帽子更高一些故选:B【考点】本题考查扇形作圆锥帽子的应用,利用圆锥的母线底面圆的半径,和圆锥的高三者之间关系,根据勾股定理确定出当当的帽子高是解题关键2、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差得出直径是解题关键,分类讨论,以防遗漏3、A【解析】【分析】连接DF,EF
10、,过点F作FNAC,FMAB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,DFE=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点
11、共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键4、B【解析】【分析】过D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC在RtADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=A
12、E+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:2【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键5、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键6、A【解析】【分析】根据等弧的定义、弦的定义、弧的定义、分别判断后即可确定正确的选项【详解】解:(1)长度相等的弧不一定是等弧,弧的度数必须相同,故错误;(2)直径是圆中最长的弦,故
13、(2)错误,(4)正确;(3)同圆或等圆中劣弧一定比优弧短,故错误;正确的只有一个,故选:A【考点】本题考查了圆的有关定义,能够了解圆的有关知识是解答本题的关键,难度不大7、B【解析】【分析】根据题意可以求得半径,进而解答即可【详解】因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距sin601,故选B【考点】本题考查正多边形和圆,解答本题的关键是明确题意,求出相应的图形的边心距8、A【解析】【分析】连接CD、OE,根据题意证明四边形OCED是菱形,然后分别求出扇形OCD和菱形OCED以及AOB的面积,最后利用割补法求解即可【详解】解:连接CD、OE,由题意可知OCOD
14、CEED,弧弧,S扇形ECDS扇形OCD,四边形OCED是菱形,OE垂直平分CD,由圆周角定理可知CODCED120,CD222,ABOAOB2,AOB是等边三角形,SAOB22,S阴影2S扇形OCD2S菱形OCED+SAOB2(22)+2(2)+3,故选:A【考点】此题考查了菱形的性质和判定,等边三角形的性质,圆周角定理,求解圆中阴影面面积等知识,解题的关键是根据题意做出辅助线,利用割补法求解9、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中
15、,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.10、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂
16、作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点二、填空题1、【解析】【详解】解:AF是AB翻折而来,AF=AB=6AD=BC=,DF=3,F是CD中点;正确;连接OP,O与AD相切于点P,OPADADDC,OPCD,设OP=OF=x,则,解得:x=2,正确;RtADF中,AF=6,DF=3,DAF=30,AFD=60,EAF=EAB=30,AE=2EFAFE=90,EFC=90AFD=30,EF=2EC,AE=4CE,错误;连接OG,作OHFG,AFD=60,OF=OG,OFG为等边同理OPG为等边,POG=FOG=60,OH=OG=,S扇形OPG=S扇
17、形OGF,S阴影=(S矩形OPDHS扇形OPGSOGH)+(S扇形OGFSOFG)=S矩形OPDHSOFG=,正确;故答案为2、【解析】【分析】连接OA,OB,证明AOB是等边三角形,继而求得AB的长,然后利用弧长公式可以计算出的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答【详解】连接OA,OB,则BAO=BAC=60,又OA=OB,AOB是等边三角形,AB=OA=1,BAC=120,的长为:,设圆锥底面圆的半径为r故答案为【考点】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径3、2【解析】【详解】分析:根据弧长公式可得结论详解:根据
18、题意,扇形的弧长为=2,故答案为2点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键4、10或70【解析】【分析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【详解】如图,作半径于C,连接OB,由垂径定理得:=AB=60=30cm,在中,当水位上升到圆心以下时水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或70cm,故答案为:10或70【考点】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键5、140【解析】【分析】在等腰中,根据三角形的外角性质可求出外角的度数;
19、而是同弧所对的圆周角和圆心角,可根据圆周角和圆心角的关系求出的度数【详解】ABD中,AB=AD,则: 故答案为【考点】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.三、解答题1、(1)平行;内错角相等,两直线平行;(2)相切,理由见解析;(3)【解析】【分析】(1)根据角平分线的定义、圆的性质可得,根据内错角相等,两直线平行即可得证;(2)利用切线的定义即可判定;(3)根据菱形的性质、圆的半径相等可得是等边三角形,利用等边三角形的性质可得,可得,利用弧长公式即可求解【详解】解:补全图形如下:;(1),根据作图可知AD平分MAN,(内错角相等,两直线平行);(2)相切,
20、理由如下:DEAM,直线DE与O相切;(3)四边形OACD为菱形,是等边三角形, 【考点】本题考查尺规作图、切线的判定与性质、等边三角形的判定与性质、弧长公式等内容,掌握上述基本性质定理是解题的关键2、 (1),;(2);(3)【解析】【分析】(1)根据新定义计算即可;(2)由(1)可知,P的等和点纵坐标比横坐标大2,根据等和点的定义,A的横坐标比纵坐标大2,由此可得方程,求解即可;(3)因为线段MN上总存在线段PC上每个点的等和点且MN的最小值为5,所以PC的最大距离不能超过5,分别找到点P和点C的等和点所在的区域或直线,然后得到MN取得最大值时,b的边界即可(1)解:由题意可知:,点Q1是
21、点P的等和点;,点Q2不是点P的等和点;,点Q3是点P的等和点;点P的等和点有,(2)解:设,由(1)可知,P的等和点纵坐标比横坐标大2,点P的等和点也是点A的等和点,A的横坐标比纵坐标大2,则,解之得:,故,(3)解:P(2,0),P点的等和点在直线y=x+2上,B(b,0),B点的等和点在直线y=x+b上,设直线y=x+b与y轴的交点为B(0,b),BC=1,C点在以B为圆心,半径为1的圆上,点C的等和点是两条直线及其之间与其平行的所有平行线上,以B为圆心,1为半径作圆,过点B作y=x+2的垂线交圆与N点,交直线于M点,MN的最小值为5,BM最小值为4,在RtBMP中,BP=,PB=,OB
22、=,同理当B点在y轴左侧时OB=,b【考点】本题考查新定义,涉及到平面直角坐标系,坐标轴上两点之间的距离,一次函数,解题的关键是理解题意,根据题意进行求解,(3)较难,需理解题意将其转化为求PC最大值问题3、(1)见解析;(2)3;(3),理由见解析【解析】【分析】(1)先求出BAD120,再求出OAB,进而得出OAD90,即可得出结论;(2)先判断出AOC是等边三角形,得出ACOC,再判断出ACCD,即可得出结论;(3)先判断出CAPCEM,进而得出ACPECM(SAS),进而得出CMCP,APCM30,再判断出,即可得出结论【详解】(1)证明:如图,连接,点在上,直线是的切线;(2)解:如
23、图1,连接,由(1)知,是等边三角形,即的半径为3;(3),理由:如图,连接,延长至,使,连接,为的直径,四边形是的内接四边形,过点作于,在中,即【考点】此题是圆的综合题,主要考查了切线的判定和性质,等边三角形的判定和勾股定理,构造出直角三角形是解本题的关键4、(1)55;(2)【解析】【分析】(1)连接OC,如图,利用切线的性质得到OCCD,则判断OCAE,所以DAC=OCA,然后利用OCA=OAC得到OAB的度数,即可求解;(2)利用(1)的结论先求得AEOEAO70,再平行线的性质求得COE=70,然后利用弧长公式求解即可【详解】解:(1)连接OC,如图,CD是O的切线,OCCD,AEC
24、D,OCAE,DAC=OCA,OA=OC,CAD=35,OAC=OCA=CAD=35,AB为O的直径,ACB=90,B=90-OAC=55;(2)连接OE,OC,如图,由(1)得EAO=OAC+CAD=70,OA=OE,AEOEAO70,OCAE,COE=AEO=70,AB=2,则OC=OE=1,的长为【考点】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线5、(1);(2) 四边形ABCD的面积为32;(3)存在【解析】【分析】(1)如图,作辅助线,证明AE=DE;证明BDEBCA ,得到,列出比例式即可解决问题(2)(2)连接OB,根据题意得AOB=60,作
25、AEBD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC,可得,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可【详解】解:如图,过点D作DEAB于点E则DE/AC;AD平分BAC,BAC=90,DAE=45,ADE=9045=45,AE=DE(设为),则BE=4;DE/AC, BDEBCA,即:解得:= ,点D到AC的距离(2)连接OB, 点B是半圆AC的三等分点(弧AB弧BC), AC是的直径, BD平分ABC过点A作AEBD于点E,则AE=BE设AE
26、=BE=x,则BD=BE+DE=x=BC=BD平分ABC AD=CD AEDE , = = =32;(3)过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC, AB=ADACB=ACDAM=ANADC+ABC=180,ADC+ADM=180,ABC=ADM又ANB=AMD=90,ABNADM AN=AM,BCA=DCA,AC=ACACNACM ABC=60ADC=120ADM=60,MAD=30设DM=x,则AD=2x, ,即抛物线对称轴为x=5当x=4时,有最大值,为【考点】本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题
Copyright@ 2020-2024 m.ketangku.com网站版权所有