1、人教版九年级数学上册第二十五章概率初步章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个
2、球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A0.3B0.7C0.4D0.62、把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()ABCD3、从-2,0,2,3中随机选一个数,是不等式的解的概率为()ABCD4、在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4若随机摸出一个小球后不放回,再随机摸出一个小球,则两次取出小球标号的和等于5的概率为()ABCD5、我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以
3、闹息“等宽曲线”除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:勒洛三角形是中心对称图形;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;图2中,等边三角形的边长为,则勒洛三角形的周长为;图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是()ABCD6、从下列一组数2,0.12,0,中随机抽取一个数,这个数是负数的概率为()ABCD7、下列命题是真命题的是()A相等
4、的两个角是对顶角B相等的圆周角所对的弧相等C若,则D在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是8、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A小亮明天的进球率为10%B小亮明天每射球10次必进球1次C小亮明天有可能进球D小亮明天肯定进球9、下列说法正确的是()A367人中至少有2人生日相同B任意掷一枚均匀的骰子,掷出的点数是偶数的概率是C天气预报说明天的降水概率为90%,则明天一定会下雨D某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖10、下列说法正
5、确的是()A为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适B“煮熟的鸭子飞了”是一个随机事件C一组数据的中位数可能有两个D为了解我省中学生的睡眠情况,应采用抽样调查的方式第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从-3,-2,5和7这四个数中任取出两个数相乘,积为正数的概率为_2、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则估计口袋中白球大约有_个3、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它
6、是黄球的概率是_4、在,3,5,7中随机选取一个数记为,再从余下的数中随机取一个数记为,则一次函数经过一、三、四象限的概率为_5、现有两个不透明的箱子,一个装有2个红球和1个白球,另一个装有1个红球和2个白球,这些球除颜色外完全相同从两个箱子中各随机摸出1个球,摸出1红1白的概率是_三、解答题(5小题,每小题10分,共计50分)1、为响应国家“双减“政策,增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和
7、喇形统计图(均不完整)(1)在这次问要调查中,一共抽查了_名学生;(2)补全频数分布直方图,求出扇形统计图中体操项目所对应的圆心角度数;(3)估计该校1200名学生中有多少名喜爱跑步项目;(4)球类教练在制定训练计划前,将从最喜欢球类项目的甲、乙、丙、丁四名同学中任选两人进行个別座谈,请用列表法或两树状图法求抽取的两人恰好是甲和乙的概率2、甲、乙两人用手指玩游戏,规则如下:每次游戏时,两人同时随机地各伸出一根手指;两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负,依据上述规则,当甲、乙两人同时随机地各伸出一根手指时(1)求甲伸出小
8、拇指取胜的概率:(2)请通过列表格或画树状图的方式求出乙取胜的概率为多少?3、甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.4、某校为了解学生对“A:古诗词,B:国画,C:闽剧,D:书法”等中国传统文化项目的最喜爱情况,在全校范围内随机抽取部分学生进行问卷调查(每人限选一项),并将调查
9、结果绘制成如下不完整的统计图,根据图中的信息解答下列问题:(1)在这次调查中,一共调查了_名学生;扇形统计图中,项目D对应扇形的圆心角为_度;(2)请把折线统计图补充完整;(3)如果该校共有2000名学生,请估计该校最喜爱项目A的学生有多少人?(4)若该校在A,B,C,D四项中任选两项成立课外兴趣小组,请用画树状图或列表的方法求恰好选中项目A和D的概率5、为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A阅读数学名著;B讲述数学故事;C制作数学模型;D挑战数学游戏要求七年级学生每人只能参加一项为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和
10、扇形统计图(如图),请根据图表信息解答下列问题:项目ABCD人数/人515ab(1)_,_(2)扇形统计图中“B”项目所对应的扇形圆心角为_度(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率-参考答案-一、单选题1、A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率【详解】通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,估计摸到黄球的概率为0.3,故选:A【考点】本题考查了利用频率估
11、计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率2、D【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号和大于3的情况,再利用概率公式即可求得答案【详解】解:根据题意,画树状图如下: 共有9种等可能结果,其中两次摸出的小球标号的和大于3的有6种,两次摸出的小球标号的和大于3的概率是,故选:D【考点】此题考查了树状图法与列表法求概率用到的知识点为:概率=所求情况数与总情况数之比3、C【解析】【分析】首先确定不等式的解集,然后利用概率公式计算即可【详解】解:解得:,
12、所以满足不等式的数有2和3两个,所以从-2,0,2,3中随机选一个数,是的解的概率为:,故选:C【考点】考查了概率公式的知识,解题的关键是正确的求解不等式,难度不大4、C【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案【详解】解:画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,两次摸出的小球标号之和等于5的概率是:.故选C.【考点】此题考查了列表法或树状图法求概率当有两个元素时,可用树形图列举,也可以列表列举解题时注意:概率=所求情况数与总情况数之比5、C【解析】【分析】根
13、据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可【详解】解:勒洛三角形是轴对称图形,不是中心对称图形,故错误;夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故正确;设等边三角形DEF的边长为2,勒洛三角形的周长=,圆的周长=,故正确;设等边三角形DEF的边长为,阴影部分的面积为:;ABC的面积为:,概率为:,故错误;正确的选项有;故选:C【考点】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键6、B【解析】【分析】找出题目给的数中的负数,用负数的个数除以总的
14、个数,求出概率即可【详解】数2,0.12,0,中,一共有6个数,其中2,0.12,为负数,有4个,这个数是负数的概率为,故答案选:B【考点】本题考查负数的认识,概率计算公式,正确找出负数的个数是解答本题的关键7、D【解析】【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若,则,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概
15、率是,故D选项正确,符合题意;故选:D【考点】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键8、C【解析】【分析】直接利用概率的意义分析得出答案【详解】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球故选C【考点】此题主要考查了概率的意义,正确理解概率的意义是解题关键9、A【解析】【详解】分析:利用概率的意义和必然事件的概念的概念进行分析详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错
16、误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选A点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念10、D【解析】【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;C. 一组数据的中位数只有1个,故该选项不正确,不符合题意;D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意;故选:D【考点】本
17、题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅
18、容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系二、填空题1、【解析】【分析】根据题意,列表法求概率即可【详解】列表如下,-3-257-3正数负数负数-2正数负数负数5负数负数正数7负数负数正数共12种等可能结果,积为正数的有4种故概率为【考点】本题考查了列表法求概率,掌握列表法求概率是解题的关键2、15【解析】【分析】摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,解得:x=15,经检验,符合题意,即白球的个数为15个,故答案为:15【
19、考点】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键3、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率【详解】解:不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,从袋子中随机取出1个球,则它是黄球的概率为;故答案为:【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比4、【解析】【分析】先画树状图,确定a,b,再根据图像分布,确定a,b的符号,根据概率公式计算即可【详解】根据题意,画树状图如下:共有12种等可能性,一次函数经过一、三、四象限,a0,b0,符合条件的有3种等可
20、能性,一次函数经过一、三、四象限的概率为;故答案为:【考点】本题考查了不放回式的概率计算,一次函数的图像分布,熟练掌握概率计算,准确画树状图是解题的关键5、【解析】【分析】列表得出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得【详解】解:列表如下:红白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(红,白)(白,白)(白,白)由表知,共有9种等可能结果,其中摸出1红1白有5种结果,所以摸出的两个球颜色相同的概率为,故答案为:【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大三、解答题1、 (1)80
21、(2)见解析,45(3)150名(4)【解析】【分析】(1)根据其他的人数和所占的百分比可以求得本次调查的人数;(2)根据(1)中的结果可以求得喜爱游泳人数,从而可以条形统计图补充完整,并求得扇形统计图中“体操”所对应的圆心角度数;(3)根据统计图中的数据可以求得该校1200名学生中有多少人喜爱跑步项目;(4)根据题目条件列出树状图,并根据概率公式求解即可(1)解:,即在这次问卷调查中,一共抽查了80名学生;(2)解:喜爱游泳的学生有(名);补全的频数分布直方图如图1所示:扇形统计图中体操项目所对应的圆心角度数是;(3)解:(名),故估计该校1200名学生中有150名喜爱跑步项目;(4)解:画
22、树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2种,所以抽取的两人恰好是甲和乙的概率为【考点】本题考查条形统计图、扇形统计图、用样本估计总体,列树状图求概率,解答本题的关键是明确题意,利用数形结合的思想解答2、 (1)(2)【解析】【分析】(1)首先根据题意画出表格,由表格求得所有等可能的结果,求出甲伸出小拇指取胜的概率;(2)首先根据题意画出表格,由表格求得所有等可能的结果,即可得出乙取胜的概率(1)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:ABCDEAAAABACADAEBBABBBCBDBECCACBCCCDCEDDADBDCDD
23、DEEEAEBECEDEE由表格可知,共有25种等可能的结果,甲伸出小拇指取胜只有一种可能,故P(甲伸出小拇指获胜);(2)由表格可知,共有25种等可能的结果,乙取胜有5种可能,故P(乙获胜)【考点】此题考查的是用列表法或树状图法求概率注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比3、(1).(2)不公平.【解析】【分析】(1)利用列表法得到所有可能出现的结果,根据概率公式计算即可;(2)分别求出甲、乙获胜的概率,比较即可【详解】(1)所有可能出现的结果如图:从表格可以看出,总共有9种结
24、果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平,从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.,甲获胜的概率大,游戏不公平4、 (1)200,9(2)见解析(3)800人(4)【解析】【分析】(1)根据折线统计图中C的人数和扇形统计图中C所占的百分比,求出总数;(2)分别求出A,B的人数,再补全统计图;(3)用总人数乘以喜爱项目A的占比即可;(4)用树状图列出所有等可能情况,再根据题意求得概率(1)解:C组调查了30人,占15%,因此总共调查了200(人),D
25、组调查了50人,占比50200=,因此项目D对应的扇形的圆心角是故答案为:200,90(2)解:根据所占的百分比和总人数得:(人),的人数为:(人)如图所示(3)解:(人)该校最喜爱项目A的学生约有800人(4)解:画树状图如下:由树状图可知,共有12种等可能的情况,其中恰好选中项目和的结果有2种(恰好选中项目和)【考点】本题考查的是折线统计图和扇形统计图的综合运用,用列表法或画树状图法求概率;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比,能对图表信息进行具体分析和熟练掌握概率公式是解题的关键5、 (1)20;10(2)108(3)【解析】【分析】(
26、1)根据A项目人数为5,占比为10%,得出总人数,然后根据D项目占比得出D项目人数,利用总人数减去各项目人数即可得出C项目人数;(2)利用B项目占比然后乘以360度即可得出结果;(3)设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;利用列表法得出所有可能的结果,然后找出满足条件的结果即可得出概率(1)解:A项目人数为5,占比为10%,总人数为:510%=50;D项目人数为:b=5020%=10人,C项目人数为:a=50-10-5-15=20人,故答案为:20;10;(2)解:,故答案为:108;(3)解:设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;列表如下:FGHMNFFGFHFMFNGGFGHGMGNHHFHGHMHNMMFMGMHMNNNFNGNHNM共有20中等可能的结果,其中满足条件的有12中结果,2名同学来自不同班级的概率为【考点】题目主要考查统计表及扇形统计图,利用树状图或列表法求概率等,理解题意,综合运用这些知识点是解题关键