1、人教版九年级数学上册第二十五章概率初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是()
2、ABCD2、一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同搅匀后任意摸出一个球,是白球的概率为()ABCD3、抛掷一枚质地均匀的硬币时,正面向上的概率是0.5则下列判断正确的是()A连续掷2次时,正面朝上一定会出现1次B连续掷100次时,正面朝上一定会出现50次C连续掷次时,正面朝上一定会出现次D当抛掷次数越大时,正面朝上的频率越稳定于0.54、如图所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上
3、或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了所示的折线统计图,由此他估计不规则图案的面积大约为()ABCD5、班长邀请,四位同学参加圆桌会议如图,班长坐在号座位,四位同学随机坐在四个座位,则,两位同学座位相邻的概率是()ABCD6、两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验可能是()A抛一枚硬币,正面朝上的概率B掷一枚正六面体的骰子,出现点的概率C转动如图所示的转盘,转到数字为奇数的概率D从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率7、在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区
4、别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是A20个B16个C15个D12个8、从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是()ABCD9、在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A朝上的点数是5的概率B朝上的点数是奇数的概率C朝上的点数大于2的概率D朝上的点数是3的倍数的概率10、小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A小亮明天的进球
5、率为10%B小亮明天每射球10次必进球1次C小亮明天有可能进球D小亮明天肯定进球第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_2、如图,有A、B、C三类长方形(或正方形)卡片(ab),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是_3、一个小球在如图所示的地面上自由
6、滚动,并随机地停留在某块方砖上,则小球停留在黑色区域的概率是_4、有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是_5、如果任意选择一对有序整数(m,n),其中|m|1,|n|3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2nxm0有两个相等实数根的概率是_三、解答题(5小题,每小题10分,共计50分)1、 “双减”政策下,为了切实提高课后服务质量,阳光中学开展了丰富多彩的课后服务活动,设置了“A.体育活动,B.劳动技能,C.经典阅读,D.科普活动”四大板块课程若该校乐乐和贝贝
7、随机选择一个板块课程(1)乐乐选“C.经典阅读”课程的概率是 ;(2)用画树状图或列表的方法,求乐乐和贝贝选不同板块课程的概率2、我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,请把图(2)补充完整;(2)请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请用列表或画树状图法求出恰好
8、抽中一男一女的概率3、有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?4、在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球、3个白球、3个黑球,它们已在袋子中被搅匀,现在有一个事件:从袋子中任意摸出n个球,红球、白球、黑球至少各有一个(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?5、为了迎接建党100
9、周年,学校举办了“感党恩跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率-参考答案-一、单选题1、C【解析】【详解】用A,B,C分别表示给九年级的三辆车,画树状图得:共有9种等可能的结果,小明
10、与小红同车的有3种情况,小明与小红同车的概率是:点睛:此题主要考查了用列表法或树状图求概率,解题关键是用字母或甲乙丙分别表示给九年级的三辆车,然后根据题意画树状图,再由树状图求得所有等可能的结果与小明与小红同车的情况,然后利用概率公式求解即可求得答案2、A【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是故选:A【考点】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键3、D【解析】【分析】根据概率的意义即可得出答案【详解】解:A. 连续掷2次时,正面朝上有可能出现,还有
11、可能不出现,故选项A判断不正确;B. 连续掷100次时,正面朝上不一定会出现50次,故选项B判断不正确;C. 连续掷次时,正面朝上不一定会出现次,故选项C判断不正确;D. 当抛掷次数越大时,正面朝上的频率越稳定于0.5,正确,故选项D符合题意,故选:D【考点】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键4、B【解析】【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为: ,当
12、事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得故选:B【考点】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高5、C【解析】【分析】采用树状图发,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则,两位同学座位相邻的概率是 .故选C.【考点】本题主要考查了画树状图求概率,正确画出树状图成为解答本
13、题的关键.6、D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P0.33,计算四个选项的概率,约为0.33者即为正确答案【详解】解:A、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;B、掷一枚正六面体的骰子,出现点的概率为,故此选项不符合题意;C、转动如图所示的转盘,转到数字为奇数的概率为,故此选项不符合题意;D、从装有个红球和个蓝球的口袋中任取一个球恰好是蓝球的概率为,故此选项符合题意故选:D【考点】此题考查了利用频率估计概率,属于常见题型,明确大量反复试验下频率稳定值即概率是解答的关键7、D【解析】【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆
14、动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率【详解】设红球有x个,根据题意得,3:(3+x)1:5,解得x12,经检验:x12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选D【考点】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键8、C【解析】【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案【详解】解:列表如下:积212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为正数的概率为,故选C【考点】本题考
15、查了列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比9、D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果故选:D【考点】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率10、C【解析】【分析】直接利用概率的意义分析得
16、出答案【详解】解:根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛小亮明天有可能进球故选C【考点】此题主要考查了概率的意义,正确理解概率的意义是解题关键二、填空题1、甲【解析】【详解】1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,P(甲获胜)=,1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,P(乙获胜)=,获胜的可能性比较大的是甲,故答案为:甲.2、【解析】【分析】依据选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,可得能拼成一个正方形的概率为【详解】解:由题可得:随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙a2+
17、2ab+b2=(a+b)2,选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,能拼成一个正方形的概率为故答案为:【考点】本题考查了列举法求概率、完全平方公式的运用,当有两个元素时,可用树形图列举,也可以列表列举解题的关键是明确题意,找出所求问题需要的条件3、【解析】【分析】求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论【详解】解:由图可知:黑色方砖有8个小三角形,每4个三角形是大正方形面积的黑色方砖在整个地板中所占的比值,小球最终停留在黑色区域的概率,故答案为:【考点】本题主要考查了简单的概率计算,解题的关键在于能够准确找出黑色方砖面积与整个区域面积的关系.
18、4、【解析】【分析】列表进行分析所有情况与两个连续整数的情况可得出解【详解】解:列表如下:123451-(2,1)(3,1)(4,1)(5,1)2(1,2)-(3,2)(4,2)(5,2)3(1,3)(2,3)-(4,3)(5,3)4(1,4)(2,4)(3,4)-(5,4)5(1,5)(2,5)(3,5)(4,5)-所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=【考点】本题考查树状图或列表求概率问题,掌握树状图或列表求概率的方法是解题关键5、 【解析】【分析】首先确定m、n的值,推出有序整数(m,n)共有:37=21(种),由方程x2+nx+m=0
19、有两个相等实数根,则需:=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,由此即可解决问题.【详解】解:m=0,1,n=0,1,2,3有序整数(m,n)共有:37=21(种),方程x2+nx+m=0有两个相等实数根,则需:=n2-4m=0,有(0,0),(1,2),(1,-2)三种可能,关于x的方程x2+nx+m=0有两个相等实数根的概率是,故答案为【考点】此题考查了概率、根的判别式以及根与系数的关系、绝对值不等式等知识,此题难度适中,注意掌握概率=所求情况数与总情况数之比三、解答题1、 (1)(2)树状图见解析,【解析】【分析】(1)直接由概率公式求解即可;(2)画树状图,共
20、有16种等可能的结果,其中小慧和小丽选同一个板块课程的结果有4种,再由概率公式求解即可(1)乐乐选“C.经典阅读”课程的概率是 ,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中乐乐和贝贝选不同板块课程的结果有12种,则乐乐和贝贝选不同板块课程的概率为【考点】此题考查的是用树状图法求概率树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验用到的知识点为:概率所求情况数与总情况数之比2、 (1)抽样调查,12,作图见解析(2)42(3)【解析】【分析】(1)根据王老师的具体调查操作判断调查方式即可根据图(1)中C班在扇形
21、统计图中的圆心角度数和图(2)中C班征集到的作品件数可以求出王老师所调查的4个班征集到的作品件数根据4个班征集到的作品件数和图(2)中A班,C班,D班征集到的作品件数可以求出B班征集到的作品件数,再据此补充条形统计图即可(2)根据王老师调查的4个班级征集到的作品件数计算每个班级平均征集到的作品件数,再估计全年级征集到的作品件数(3)根据题意画出树状图再计算概率即可(1)解:王老师从全年级14个班中随机抽取了4个班,王老师采取的调查方式是抽样调查故答案为:抽样调查从图(1)中可知C班在扇形统计图中的圆心角度数为150,从图(2)中可知C班征集到的作品数为5件,王老师所调查的4个班征集到的作品数为
22、:512件故答案为:12B班征集到的作品件数为:122523件补全图(2),如图所示:(2)解:1243,31442所以全年级共征集到作品约有42件(3)解:画树状图得:共有20种等可能的结果,恰好抽中一男一女的有12种情况,恰好抽中一男一女的概率为:【考点】本题考查了调查方式,条形统计图和扇形统计图信息关联,用样本估计总体,列表法或树状图法求概率,熟练掌握这些知识点是解题关键3、 (1)掷出“6”朝上的可能性有;(2)3与6,4与2,1与5朝上的可能性一样大;(3)3,6朝上的面最多,因而可能性最大【解析】【分析】(1)让“6”朝上的情况数除以总情况数即为所求的可能性;(2)看哪两个数字出现
23、的情况数相同即可;(3)看哪个数字出现的情况最多即可【详解】(1)标有“6”,的面有3个,因而掷出“6”朝上的可能性有;(2)3与6,4与2,1与5朝上的可能性一样大;(3)3,6朝上的面最多,因而可能性最大【考点】用到的知识点为:可能性等于所求情况数与总情况数之比可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等4、(1)或8或9;(2)或2;(3)或4或5或6【解析】【分析】(1)当至少摸出七个球时,红球、白球、黑球至少各有一个;(2)当摸球个数不足3个时,不可能出现红球、白球、黑球至少各一个;(3)当摸球个数不小
24、于3个,不超过6个时,这个事件可能发生.【详解】(1)当时,即或8或9时,这个事件必然发生(2)当时,即或2时,这个事件不可能发生(3)当时,即或4或5或6时,这个事件可能发生【考点】本题主要考查了事件的分类,明确必然事件,不可能事件以及随机事件的概念是解题的关键.5、(1);(2)见解析,【解析】【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率【详解】解:(1)共有4种可能出现的结果,其中是舞蹈社团D的有1种,小颖从中随机抽取一张卡片是舞蹈社团D的概率是,故答案为:;(2)用列表法表示所有可能出现的结果如下:ABCDAABACADBBABCBDCCACBCDDDACBDC共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,小颖抽取的两张卡片中有一张是演讲社团C的概率是【考点】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键