1、人教版九年级数学上册第二十五章概率初步专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形ABCD的对角线AC、BD相交于O,给出的四个条件AB=BC;ABC=90;OA=OB;ACBD,从
2、所给的四个条件中任选两个,能判定平行四边形ABCD是正方形的概率是()ABCD2、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,那么估计摸到黄球的概率为()A0.3B0.7C0.4D0.63、如图,在的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()
3、ABCD4、若气象部门预报明天下雨的概率是70%,下列说法正确的是()A明天下雨的可能性比较大B明天一定不会下雨C明天一定会下雨D明天下雨的可能性比较小5、小冬和小松正在玩“掷骰子,走方格”的游戏游戏规则如下:(1)掷一枚质地均匀的正方体骰子(骰子六个面的数字分别是1至6),落地后骰子向上一面的数字是几,就先向前走几格,然后暂停(2)再看暂停的格子上相应的文字要求,按要求去做后,若还有新的文字要求,则继续按新要求去做,直至无新要求为止,此次走方格结束下图是该游戏的部分方格:大本营1对自己说“加油!”2后退一格3前进三格4原地不动5对你的小伙伴说“你好!”6背一首古诗例如:小冬现在的位置在大本营
4、,掷骰子,骰子向上一面的数字是2,则小冬先向前走两格到达方格2,然后执行方格2的文字要求“后退一格”,则退回到方格1,再执行方格1的文字要求:对自己说“加油!”小冬此次“掷骰子,走方格”结束,最终停在了方格1如果小松现在的位置也在大本营,那么他掷一次骰子最终停在方格6的概率是()ABCD6、某鱼塘里养了1600条鲤鱼,若干条草鱼和800条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕到草鱼的频率稳定在0.5附近,则该鱼塘捞到鲢鱼的概率约为( )ABCD7、如图所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起
5、来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了所示的折线统计图,由此他估计不规则图案的面积大约为()ABCD8、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()ABCD9、如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;若再次用计算机模拟此实验
6、,则当抛掷次数为150时,“正面向上”的频率一定是0.45其中合理的是()ABCD10、一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有三张完全一样正面分别写有字母A,B,C的卡片将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_2、袋子中装有除颜色外完全相同的n个黄色乒乓球和3个白色乒乓球,从中随机抽取1个,若选中白色乒乓球的
7、概率是,则n的值是_3、一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是_4、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_5、不透明袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则它是黄球的概率是_三、解答题(5小题,每小题10分,共计50分)1、 “共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫,本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠
8、疫苗居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:接种地点疫苗种类医院A新冠病毒灭活疫苗B重组新冠病毒疫苗(CHO细胞)社区卫生服务中心C新冠病毒灭活疫苗D重组新冠病毒疫苗(CHO细胞)若居民甲、乙均在A、B、C、D中随机独立选取一个接种点接种疫苗,且选择每个接种点的机会均等(提示:用A、B、C、D表示选取结果)(1)求居民甲接种的是新冠病毒灭活疫苗的概率;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率2、如图是甲、乙两个可以自由转动且质地均匀的转盘,甲转盘被分成三个大小相同的扇形,分别标有1,2,
9、3;乙转盘被分成四个大小相同的扇形,分别标有1,2,3,4,指针的位置固定,转动转盘直至它自动停止(若指针正好指向扇形的边界,则重新旋转转盘,直至指针指向扇形内部)(1)转动甲转盘,指针指向3的概率是 ;(2)利用列表或画树状图的方法求转动两个转盘指针指向的两个数字和是5的概率3、我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,请把图(2)补充完整;(2)请估计全年级共征集到作品多少件?
10、(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请用列表或画树状图法求出恰好抽中一男一女的概率4、2022年2月4日,北京冬奥会正式拉开帷幕,小明同学非常喜欢冰球、短道速滑、自由式滑雪、冰壶、花样滑冰这五个项目,他也想知道大家对这五个项目的喜爱程度,于是他对所在小区的居民做了一次随机调查统计,让每个人在这五个项目中选一项最喜欢的,并根据这个统计结果制作了如下两幅不完整的统计图:(其中A冰球、B短道速滑、C自由式滑雪、D冰壶、E花样滑冰)(1)该小区居民在这次随机调查中被调查到的人数是_人,_,并补全条形统计图;(2)若
11、该小区有居民1200人,试估计喜欢短道速滑这个项目的居民约有多少人?(3)由于小明同学能够观看比赛的时间有限,所以他只能从这五个项目中随机选两个项目观看,请问他同时选到B,C这两个项目的概率是多少?(要求画树状图或列表求概率)5、为了调查某地区九年级学生的身体素质情况,随机抽查了部分九年级学生进行体能测试,并依据其中仰卧起坐测试(次数/分钟)的结果绘制统计图表如下(不完整):组别次数段频数频率150.12120.243am4bn540.08(1)将统计表中的数据补充完整:_,_,_,_;(2)若该地区九年级有12000名学生,请估算该地区九年级每分钟仰卧起坐次数多于45次的学生数;(3)若测试
12、结果大于60次(含60次)为优秀,需要抽取其中两名同学进行复核,已知优秀的学生中含有2个女生,求恰好抽到同性别学生的概率-参考答案-一、单选题1、D【解析】【分析】先确定组合的总数,再确定能判定是正方形的组合数,根据概率公式计算即可【详解】一共有,;6种组合数,其中能判定四边形是正方形有,4种组合数,所以能判定平行四边形ABCD是正方形的概率是,故选D【考点】本题考查了概率公式计算,熟练掌握正方形的判定是解题的关键2、A【解析】【分析】根据利用频率估计概率得摸到黄球的频率稳定在0.3,进而可估计摸到黄球的概率【详解】通过大量重复摸球实验后发现,摸到黄球的频率稳定在0.3,估计摸到黄球的概率为0
13、.3,故选:A【考点】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率3、A【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值【详解】解:由图可知,总面积为:56=30,阴影部分面积为:,飞镖击中扇形OAB(阴影部分)的概率是,故选:A【考点】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率4、A【解析】【分析】根据“概率”的意义进行判断
14、即可【详解】解:A 明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意,B. 明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项B不符合题意;C 明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D 明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项D不符合题意,故选:A【考点】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键5、B【解析】【分析】根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答即可【详解】掷一次骰子最终停在方格6的情况有直接掷6;掷3后前进三格到6;所以掷一
15、次骰子最终停在方格6的概率是,故选B【考点】此题考查几何概率,关键是根据掷一次骰子最终停在方格6的出现的情况利用概率公式解答6、D【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率【详解】解:捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:,x=2400,经检验:是原方程的根,且符合题意,捞到鲢鱼的概率为:,故选:D【考点】本题考察了概率、分式方程的知识,解题的关键是熟练掌握概率的定义,通过求解方程,从而得到答案7、B【解析】【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线
16、图用频率估计概率,综合以上列方程求解【详解】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为: ,当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得故选:B【考点】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高8、A【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6
17、张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率 故选A【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.9、B【解析】【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可【详解】解:当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的
18、频率不一定是0.45,故错误故选:B【考点】本题考查了利用频率估计概率,明确概率的定义是解题的关键10、C【解析】【详解】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【考点】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 二、填空题1、【解析】【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案【
19、详解】解:根据题意列表如下:ABCAAABACABABBBCBCACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以P(抽取的两张卡片上的字母相同)【考点】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验2、6【解析】【分析】根据随机事件的概率等于所求情况数与总数之比列出方程,解方程即可求出n的值【详解】解:根据题意得:,解得:n6,经检验,n6是分式方程的解;故答案为:6【考点】本题主要考查分式方程的应用和随机事件的概率,掌握概率
20、公式是解题的关键3、【解析】【分析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖6块,共有16块方砖,黑色方砖在整个区域中所占的比值=,小球停在黑色区域的概率是;故答案为:【考点】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比4、【解析】【分析】根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率【详解】设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:=.故答案为.【考点】本题考查几何概率,解
21、题的关键是熟练掌握几何概率的求法.5、【解析】【分析】用黄球的个数除以总球的个数即可得出取出黄球的概率【详解】解:不透明的袋子中装有10个球,其中有3个黄球、5个红球、2个黑球,从袋子中随机取出1个球,则它是黄球的概率为;故答案为:【考点】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比三、解答题1、(1);(2)【解析】【分析】(1)利用概率公式直接计算即可;(2)先列表求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.【详解】解:(1)由概率的含义可得:居民甲接种的是新冠病毒灭活疫苗的概率是 (2)列表如下:
22、由表中信息可得一共有种等可能的结果数,属于同种疫苗的结果数有:,共 种,所以居民甲、乙接种的是相同种类疫苗的概率为:【考点】本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.2、(1);(2)【解析】【分析】(1)利用概率公式求解指针指向3的概率即可;(2)先列表得到所有的等可能的结果数与和为5的结果数,再利用概率公式求解即可【详解】解:(1)甲转盘被分成三个大小相同的扇形,分别标有1,2,3;所以转动甲转盘,指针指向3的概率是: 故答案为:;(2)列表如下:12341和2和3和4和52和3和4和5和63和4和5和6和7所有的等可能的结果数有
23、12种,和为5的结果数有3种,所以转动两个转盘指针指向的两个数字和是5的概率【考点】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表法得到所有的等可能的结果数与符合条件的结果数”是解本题的关键.3、 (1)抽样调查,12,作图见解析(2)42(3)【解析】【分析】(1)根据王老师的具体调查操作判断调查方式即可根据图(1)中C班在扇形统计图中的圆心角度数和图(2)中C班征集到的作品件数可以求出王老师所调查的4个班征集到的作品件数根据4个班征集到的作品件数和图(2)中A班,C班,D班征集到的作品件数可以求出B班征集到的作品件数,再据此补充条形统计图即可(2)根据王老师调查的
24、4个班级征集到的作品件数计算每个班级平均征集到的作品件数,再估计全年级征集到的作品件数(3)根据题意画出树状图再计算概率即可(1)解:王老师从全年级14个班中随机抽取了4个班,王老师采取的调查方式是抽样调查故答案为:抽样调查从图(1)中可知C班在扇形统计图中的圆心角度数为150,从图(2)中可知C班征集到的作品数为5件,王老师所调查的4个班征集到的作品数为:512件故答案为:12B班征集到的作品件数为:122523件补全图(2),如图所示:(2)解:1243,31442所以全年级共征集到作品约有42件(3)解:画树状图得:共有20种等可能的结果,恰好抽中一男一女的有12种情况,恰好抽中一男一女
25、的概率为:【考点】本题考查了调查方式,条形统计图和扇形统计图信息关联,用样本估计总体,列表法或树状图法求概率,熟练掌握这些知识点是解题关键4、 (1)20,35;(2)估计喜欢短道速滑这个项目的居民约有420人(3)【解析】【分析】(1)用D项目的人数除以其百分比即可得到总人数,从而可以求出m的值,再求出C项目的人数补全统计图即可;(2)用1200乘以样本中喜欢短道速滑的人数的百分比即可得到答案;(3)利用列表法或者树状图法求解即可(1)解:由题意得,这次随机调查中被调查到的人数是人,即,C项目的人数为200-70-20-20-50=40人,补全统计图如下所示:故答案为:20,35;(2)解:
26、人,估计喜欢短道速滑这个项目的居民约有420人;(3)解:列表如下:项目ABCDEA(B、A)(C、A)(D、A)(E、A)B(A,B)(C、B)(D、B)(E、B)C(A、C)(B、C)(D、C)(E、C)D(A、D)(B、D)(C、D)(E、D)E(A、E)(B、E)(C、E)(D、E)由表格可知一共有20种等可能性的结果数,其中同时选中B、C两个项目的结果数有2种,同时选中B、C两个项目概率为【考点】本题主要考查了扇形统计图和条形统计图信息相关联,用样本估计总体,树状图或列表法求解概率,正确读懂统计图是解题的关键5、 (1)17;13;0.32;0.26(2)4080人(3)【解析】【分析】(1)用的圆心角度数除以360度即可求出n,利用的频数除以频率得到总人数,即可求出m、b、a;(2)用12000乘以样本中多于45次的学生占比即可得到答案;(3)用列举法求解即可;(1)解:由题意得:,总人数人,;(2)解:由题意得:人,该地区九年级每分钟仰卧起坐次数多于45次的学生数4080人;(3)解:优秀的人数总共有4人,其中女生有两人,则男生也有两人,一共有(男,男),(男,女),(女,男),(女,女)四种等可能的结果数,抽取两个学生是同性别的概率 【考点】本题主要考查了频数频率分布表,扇形统计图,用样本估计总体,列举法求概率,熟练掌握相关知识是解题的关键