收藏 分享(赏)

基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx

上传人:a**** 文档编号:958309 上传时间:2025-12-19 格式:DOCX 页数:31 大小:636.48KB
下载 相关 举报
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第1页
第1页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第2页
第2页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第3页
第3页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第4页
第4页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第5页
第5页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第6页
第6页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第7页
第7页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第8页
第8页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第9页
第9页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第10页
第10页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第11页
第11页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第12页
第12页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第13页
第13页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第14页
第14页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第15页
第15页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第16页
第16页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第17页
第17页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第18页
第18页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第19页
第19页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第20页
第20页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第21页
第21页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第22页
第22页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第23页
第23页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第24页
第24页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第25页
第25页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第26页
第26页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第27页
第27页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第28页
第28页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第29页
第29页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第30页
第30页 / 共31页
基础强化人教版九年级数学上册第二十二章二次函数专题测试试题(含解析).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮

2、弹所在高度最高的是( )A第秒B第秒C第秒D第秒2、在平面直角坐标系中,抛物线的顶点一定不在()A第一象限B第二象限C第三象限D第四象限3、如图,抛物线yx2+7x与x轴交于点A,B,把抛物线在x轴及共上方的部分记作C1将C1向左平移得到C2,C2与x轴交于点B,D,若直线yx+m与C1,C2共3个不同的交点,则m的取值范是()ABCD4、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD5、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三象限D第四象限6、2019年女排世界杯于9月在日本举行,中

3、国女排以十一连胜的骄人成绩卫冕冠军,充分展现了团队协作、顽强拼搏的女排精神如图是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作拋物线,在同一竖直平面内建立如图所示的直角坐标系,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点)距球网的水平距离为2.5米,则排球运动路线的函数表达式为() A BCD7、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水

4、面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米8、若二次函数y=ax2+bx+c的x与y的部分对应值如下表:则下列说法错误的是()x-10123yA二次函数图像与x轴交点有两个Bx2时y随x的增大而增大C二次函数图像与x轴交点横坐标一个在10之间,另一个在23之间D对称轴为直线x=1.59、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD10、如图,在平面直角坐标系中,二次函数yx22xc的图象与x轴交于A、C两点,与y轴交于点B(0,3),若P是x轴上一动点,点D(0,1)在

5、y轴上,连接PD,则PDPC的最小值是()A4B22C2D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若抛物线 的图像与轴有交点,那么的取值范围是_.2、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_3、在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4

6、,依次进行下去,则点A2021的坐标为_4、二次函数的最小值为_5、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元三、解答题(5小题,每小题10分,共计50分)1、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小

7、明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?2、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门

8、票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?3、为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户发展种植业,每亩土地每年发放种植补贴120元张远村老张计划明年承租部分土地种植某种经济作物考虑各种因素,预计明年每亩土地种植该作物的成本(元)与种植面积(亩)之间满足一次函数关系,且当时,;当时,(1)求与之间的函数关系式(不求自变量的取值范围);(2)受区域位置的限制,老张承租土地的面积不得超过240亩若老张明年销售该作物每亩的销售额能达到2160元,当种植面积为多少时,老张明年种植该作物的总利润

9、最大?最大利润是多少?(每亩种植利润每亩销售额每亩种植成本每亩种植补贴)4、 “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5、如图,抛物线的顶点为A(h,1),与y轴交于点B,点F(2,1)为其对称轴上的一个定点(1)

10、求这条抛物线的函数解析式;(2)已知直线l是过点C(0,3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PFd;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标-参考答案-一、单选题1、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.2、D【解

11、析】【分析】把函数解析式整理成顶点式形式,再根据的取值范围,分类讨论,即可判断顶点所在的象限【详解】解:(1),顶点坐标为当时,顶点在第三象限;当时,顶点在第二象限;当时,顶点在第一象限;综上所述,抛物线的顶点一定不在第四象限,故选:D【考点】本题考察了二次函数解析式的转化,坐标轴上点的性质,熟悉相关性质是解题的关键3、A【解析】【分析】首先求出点和点的坐标,然后求出解析式,分别求出直线与抛物线相切时的值以及直线过点时的值,结合图形即可得到答案【详解】解:将y0代入,得:,解得:,抛物线与轴交于点、,抛物线向左平移4个单位长度,平移后解析式,如图,当直线过点,有2个交点,解得:,当直线与抛物线

12、相切时,有2个交点,整理得:,相切,解得:,若直线与、共有3个不同的交点,故选:A【考点】本题主要考查抛物线与轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度4、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过的象限,找出,是解题的关键5、D【解析】【分析】根据二次函数图象

13、的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y轴正半轴相交可知c0,对称轴x=-0,得b0,当x=-2时,二次函数有最小值-4,故答案为:-4【考点】此题考查将二次函数一般式化为顶点式,函数的性质,熟练转化函数解析式的形式及掌握确定最值的方法是解题的关键5、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值126

14、4,故最大利润为1264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点三、解答题1、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题

15、的关键2、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平

16、均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【考点】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键3、(1);(2)种植面积为240亩时总利润最大,最大利润268800元【解析】

17、【分析】(1)利用待定系数法求出一次函数解析式即可;(2)根据明年销售该作物每亩的销售额能达到2160元,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系为,进而得出W与x的函数关系式,再利用二次函数的最值公式求出即可【详解】解:(1)设与之间的函数关系式,依题意得:,解得:,与之间的函数关系式为(2)设老张明年种植该作物的总利润为元,依题意得:,当时,随的增大而增大由题意知:,当时,最大,最大值为268800元即种植面积为240亩时总利润最大,最大利润268800元【考点】此题主要考查了一次函数和二次函数的应用,掌握待定系数法求函数解析式并根据已知得出W与x的函数关系式是求最值问

18、题的关键4、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-1

19、0x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【考点】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重

20、点和难点5、(1);(2)见解析;(3),【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可(2)由题意P(m,),求出d2,PF2(用m表示)即可解决问题(3)如图,过点Q作QH直线l于H,过点D作DN直线l于N因为DFQ的周长=DF+DQ+FQ,DF是定值=,推出DQ+QF的值最小时,DFQ的周长最小,再根据垂线段最短解决问题即可【详解】解:(1)设抛物线的函数解析式为由题意,抛物线的顶点为又抛物线与轴交于点抛物线的函数解析式为(2)证明:P(m,n),P(m,),F(2,1),d2=PF2,PF=d(3)如图,过点Q作QH直线l于H,过点D作DN直线l于NDFQ的周长=DF+DQ+FQ,DF是定值=,DQ+QF的值最小时,DFQ的周长最小,QF=QH,DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,DQ+QH的最小值为6,DFQ的周长的最小值为,此时Q(4,-)【考点】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1