收藏 分享(赏)

基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx

上传人:a**** 文档编号:958230 上传时间:2025-12-19 格式:DOCX 页数:31 大小:1.18MB
下载 相关 举报
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第1页
第1页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第2页
第2页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第3页
第3页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第4页
第4页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第5页
第5页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第6页
第6页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第7页
第7页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第8页
第8页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第9页
第9页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第10页
第10页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第11页
第11页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第12页
第12页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第13页
第13页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第14页
第14页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第15页
第15页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第16页
第16页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第17页
第17页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第18页
第18页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第19页
第19页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第20页
第20页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第21页
第21页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第22页
第22页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第23页
第23页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第24页
第24页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第25页
第25页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第26页
第26页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第27页
第27页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第28页
第28页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第29页
第29页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第30页
第30页 / 共31页
基础强化人教版九年级数学上册第二十三章旋转同步测评试卷(解析版).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线先绕坐标原点旋转,再向右平移个单位长度,所得抛物线的解析式为()ABCD2、如图所示,在RtABC中,AB

2、AC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后得到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD3、如图,与关于成中心对称,不一定成立的结论是()ABCD4、如图,将ABC绕点B顺时针旋转60得DBE,点C的对应点E恰好落在AB延长线上,连接AD下列结论一定正确的是()AABDEBCBECCADBCDADBC5、如图,将直角三角板绕顶点A顺时针旋转到,点恰好落在的延长线上,则为()ABCD6、如图,在菱形中,顶点,在坐标轴上,且,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,将菱形与构成的图形绕点

3、逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为()ABCD7、下列命题是真命题的是()A一个角的补角一定大于这个角B平行于同一条直线的两条直线平行C等边三角形是中心对称图形D旋转改变图形的形状和大小8、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接 DG,将AGD绕点A 逆时针旋转60得到AEF,则BF的长为()AB2CD29、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD10、下面四个手机应用图标中是轴对称图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,等腰直角

4、三角形OAB,A90,点O为坐标原点,点B在x轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_2、在平面直角坐标系内,点A(,2)关于原点中心对称的点的坐标是_3、如果点A(3,2m1)关于原点对称的点在第一象限,则m的取值范围是_4、如图,两块完全一样的含30角的三角板完全重叠在一起,若绕长直角边中点M转动,使上面一块三角板的斜边刚好经过下面一块三角板的直角顶点,已知A30,BC2,则此时两直角顶点C,C间的距离是 _5、如图,把ABC绕点C按顺时针方向旋转35,

5、得到,交AC于点D,若,则A= 三、解答题(5小题,每小题10分,共计50分)1、(1)方法感悟:如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足EAF45,连接EF,求证:DEBFEF感悟解题方法,并完成下列填空:将ADE绕点A顺时针旋转90得到ABG,此时AB与AD重合,由旋转可得:ABAD,BGDE,12,ABGD90,ABGABF9090180因此,点G,B,H在同一条直线上EAF45,23BADEAF904545,1345即GAF_又AGAE,AFAF,_EF故DEBFEF(2)方法迁移:如图2,将RtABC沿斜边翻折得到ADC,点E,F分别为DC,BC边上的点,

6、且试猜想DE,BF,EF之间有何数量关系,并证明你的猜想(3)问题拓展:如图3,在四边形ABCD中,ABAD,E,F分别为DC,BC上的点,满足,试猜想当B,D满足什么关系时,可使得DEBFEF?请说明理由2、已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点E、D、M都在线段AF上,BM的延长线交CF于点P(1)求证:AC=CD;(2)若BAC=2MPC,请你判断F与MCD的数量关系,并说明理由3、如图,先将绕点顺时针旋转得到,再将线段绕点顺时针旋转得到,连接、,且(1)若求证:、三点共线;求的长;(2)若,点在边上,求线段的最小值4

7、、如图,等腰中,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转角,得到线段PQ,连接、M为线段BQ的中点(1)若点P在线段BC上,且M恰好也为AP的中点,依题意在图1中补全图形:求出此时的值和的值;(2)写出一个的值,使得对于任意线段BC延长线上的点P,总有的值为定值,并证明;5、如图,等腰RtABC中,A45,ABC90,点D在AC上,将ABD绕点B沿顺时针方向旋转90后,得到CBE(1)求DCE的度数;(2)若AB4,CD3AD,求DE的长-参考答案-一、单选题1、C【解析】【分析】先根据点绕坐标原点旋转的坐标变换规律、待定系数法求出旋转后的抛物线的解析式,

8、再根据二次函数的图象平移的规律即可得【详解】将抛物线的顶点式为则其与x轴的交点坐标为,顶点坐标为点绕坐标原点旋转的坐标变换规律:横、纵坐标均变为相反数则绕坐标原点旋转后,所得抛物线与x轴的交点坐标为,顶点坐标为设旋转后所得抛物线为将点代入得:,解得即旋转后所得抛物线为则再向右平移个单位长度,所得抛物线的解析式为即故选:C【考点】本题考查了点绕坐标原点旋转的坐标变换规律、待定系数法求二次函数解析式、二次函数的图象平移的规律,熟练掌握坐标旋转变换规律和二次函数的图象平移规律是解题关键2、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的性质一一判断即可【详解】解:ADC绕A顺时针旋转

9、90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型3、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形4、C【解析】【详解】根据旋转的性质

10、得,ABDCBE=60,EC,AB=BD,则ABD为等边三角形,即 ADAB=BD,ADB=60因为ABDCBE=60,则CBD=60,所以ADB=CBD,ADBC.故选C.5、B【解析】【分析】根据直角三角形两锐角互余,求出的度数,由旋转可知,在根据平角的定义求出的度数即可【详解】,由旋转可知,故答案选:B【考点】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键6、D【解析】【分析】将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,所以点E每8次一循环,又因为20228=252.6,所以E2022坐标与E6坐标相同,求

11、出点E6的坐标即可求解【详解】解:如图,将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,由图可得点E每8次一循环,20228=252.6,E2022坐标与E6坐标相同,A(0,1),OA=1,菱形,ABO=ADO=30,AD=AB=2OA=2,OD=,ADE是等边三角形,ADE=60,DE=AD=2,ODE=90,DOE+DEO=90,过点E6作E6Fx轴于F,OFE6=ODE=90,E6OE=90,DOE+E6OF=90,DEO=E6OF,OE=OE6,ODEE6FO(AAS),OF=DE=2,E6F=OD=,E6(2,-),E2022(2,-),故

12、选:D【考点】本题考查图形变换规律,菱形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,本题属旋转规律型,坐标变换规律型问题,找出图形变换规律,即得出点E变换规律是解题的关键7、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B【考点】本题考查了补角的定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关

13、键是熟练掌握所学的知识,分别进行判断8、A【解析】【分析】过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEF,得FAD=60,AF=AD=2,又由四边形ABCD是矩形,BAD=90,得到FAH=30,在RtAFH中,FH=AF=1,由勾股定理得AH= ,得到BH=AH+AB=2 ,再由勾股定理得BF=【详解】解:如图,过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEFFAD=60,AF=AD=2, 四边形ABCD是矩形 BAD=90BAF=FAD+ BAD=150FAH=180BAF=30在RtAFH中,FH=

14、AF=1由勾股定理得AH= 在RtBFH中,FH=1,BH=AH+AB=2 由勾股定理得BF= 故BF的长故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线9、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图

15、形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.10、D【解析】【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确故选D【考点】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键二、填空题1、【解析】【分析】根据题意得:A1(,

16、0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为:【考点】本题主要考查了图形的旋转,明确题意,准确得到规律是解题的关键2、(,2)【解析】【分析】关于原点中心对称的点的坐标特征是:横坐标、纵坐标均变为原数的相反数【详解】解:点A(,2)关于原点中心对称的点的坐标是(,2) 故答案为:(,2)【考点】本题考查关于原点中心对称的点的坐标特征,是重要考点,难度较易,掌握相关知识是解题关键3、【解析】【分析】根据关于原点对称的点的横坐标

17、与纵坐标互为相反数判断出2m+10,然后解不等式即可【详解】解:点A(3,2m+1)关于原点的对称点在第一象限,点A(3,2m+1)在第三象限,2m+10,解得m故答案为:m【考点】本题考查的是关于原点对称的点的坐标,解答本题的关键是熟练掌握关于原点对称的点的横、纵坐标均互为相反数,同时熟记各个象限内点的坐标的符号特点.4、【解析】【分析】先求解,由旋转的性质可得可证是等边三角形,即可求的长【详解】解:如图,连接, 点M是AC中点, AM=CM=, 旋转, , ,是等边三角形 故答案为:【考点】本题考查了等边三角形的判定,勾股定理的应用,旋转的性质,熟练运用旋转的性质是解本题的关键5、55【解

18、析】【分析】根据旋转的性质可得,再由直角三角形两锐角互余,即可求解【详解】解:把ABC绕点C按顺时针方向旋转35,得到, A=55故答案为:55【考点】本题主要考查了图形的旋转,直角三角形两锐角的关系,熟练掌握旋转的性质,直角三角形两锐角互余是解题的关键三、解答题1、(1)EAF;EAF;GF;(2)EFDEBF,见解析;(3)BD180,见解析【解析】【分析】(1)根据图形和推理过程填空即可;(2)根据题意,分别证明,即可得出结论(3)根据角之间关系,只要满足B+D180时,就可以得出三角形全等,利用全等三角形的性质即可得出答案【详解】(1)解:将ADE绕点A顺时针旋转90得到ABG,此时A

19、B与AD重合,由旋转可得:ABAD,BGDE,12,ABGD90,ABG+ABF90+90180,因此,点G,B,F在同一条直线上,EAF45,2+3BADEAF904545,1+345,即GAFEAF,又AGAE,AFAF,GAFEAF(SAS),GFEF,故DE+BFEF;故答案为:EAF,EAF,GF(2)EFDEBF,理由如下:如图,延长CF,作41将RtABC沿斜边翻折得到RtADC,点E,F分别为DC,BC边上的点,且,1235,231541,2345,GAFFAE在AGB和AED中,AGAE,BGDE在AGF和AEF中,GFEFDEBFEF(3)当B与D满足BD180时,可使得D

20、EBFEF如图,延长CF,作21ABCD180,ABCABG180,DABG在AGB和AED中, BGDE,AGAE,EAFGAF在AGF和AEF中, GFEF,DEBFEF故当B与D满足BD180时,可使得DEBFEF【考点】本题主要考查了正方形的性质,全等三角形的判定和性质以及旋转变换性质等知识,根据题意作出与已知相等的角,利用三角形全等是解决问题的关键2、见解析【解析】【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案【详解】(1)证明:ABM与ACM关于直线AF成轴对称,ABMACM,AB

21、=AC,又ABE与DCE关于点E成中心对称,ABEDCE,AB=CD,AC=CD;(2)F=MCD.理由:由(1)可得BAE=CAE=CDE,CMA=BMA,BAC=2MPC,BMA=PMF,设MPC=,则BAE=CAE=CDE=,设BMA=,则PMF=CMA=,F=CPMPMF=,MCD=CDEDMC=,F=MCD.【考点】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.3、 (1)证明见详解;BG= 4(2)线段PD的最小值为2+ 2【解析】【分析】(1)由旋转的性质可得ACD= 90=BCE, AB= DE,BC=

22、 CE, AC= CD,ABC=DEC= 135,由等腰三角形的性质可得BEC = 45 =CBE,可证BEC +CED= 180,可得结论;通过证明四边形ABDG是矩形,可得AD= BG,由等腰直角三角形的性质可求解;(2)由垂线段最短可得当PDAB时,PD的长度有最小值,先证点P,点E,点D三点共线,由勾股定理可求DE的长,由正方形的性质可得BC= PE= 2,即可求解.(1)证明:如图,连接AG,将ABC绕点C顺时针旋转90得到DEC,ABCDEC,ACD= 90=BCE,AB=DE,BC=CE,AC=CD,ABC =DEC= 135BEC= 45=CBE,BEC+CED=180 B、E

23、、D三点共线;将线段DE绕点D顺时针旋转90得到DGDE= DG,EDG = 90AB= DE= DG,ABE=ABC-CBE=90,ABE+EDG = 180,AB/DG,四边形ABDG是平行四边形,又BDG = 90四边形ABDG是矩形, AD= BG,AC= CD=4,ACD= 90, AD=AC= 4,BG= 4;(2)如图:点P在边AB上,当PDAB时,PD的长度有最小值由旋转的性质可得:ABC=CED=BCE= 90,BC/ DE,ABC+BPD= 180,DP/ BC,点P,点E,点D三点共线,AC= 2CE,BC=CE= 2,又ABC=BPE=BCE= 90,四边形BPEC是正

24、方形,BC= PE= 2,CD= AC=4, CE= 2,CED = 90, DE=DP=2+2,线段PD的最小值为2+ 2【考点】本题是几何变换综合题,考查了旋转的性质,全等三角形的性质,等腰三角形的性质,矩形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键4、 (1)见解析;(2),理由见解析【解析】【分析】(1)由题意,画出图形即可;连接AQ,证四边形ABPQ是平行四边形,得ABPC,再根据是等腰三角形即可求解(2)令,延长PM至N,使得MNPM,连接BN、AN、QN,证四边形BNQP是矩形,根据证,得出为等腰直角三角形,即可求解(1)如图所示,即为所求,连接AQ,如图

25、所示,M为AP、BQ的中点,AM=PM,BM=QM,四边形ABPQ是平行四边形,ABPQ,AB/PQ,PC=PQ,ABPC,为等腰直角三角形,(2),延长PM至N,使得MNPM,连接BN、AN、QN,如图所示:M为线段BQ的中点,BM=QM,又MNPM,四边形BNQP是平行四边形,又CPQ=90,四边形BNQP是矩形,为等腰直角三角形,即,又AB=AC,即,即为等腰直角三角形,又,即的值为定值,当时,的值为定值【考点】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性质,熟练利用辅助线构造平行四边形是解题的关键5、(1)90;(2)【解析】【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得DCE的度数;(2)根据勾股定理求出AC的长,根据CD3AD,可得CD和AD的长,根据旋转的性质可得ADEC,再根据勾股定理即可得DE的长【详解】解:(1)ABC为等腰直角三角形,BADBCD45,由旋转的性质可知BADBCE45,DCEBCEBCA454590;(2)BABC,ABC90,CD3AD,由旋转的性质可知:ADEC,【考点】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1