1、人教版九年级数学上册第二十三章旋转专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是()ABCD2、如图,与关于成中心对称,不一
2、定成立的结论是()ABCD3、如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A平行四边形正方形平行四边形矩形B平行四边形菱形平行四边形矩形C平行四边形正方形菱形矩形D平行四边形菱形正方形矩形4、如图,在菱形中,顶点,在坐标轴上,且,分别以点,为圆心,以的长为半径作弧,两弧交于点,连接,将菱形与构成的图形绕点逆时针旋转,每次旋转45,则第2022次旋转结束时,点的坐标为()ABCD5、下列交通标识中,不是轴对称图形,是中心对称图形的是()ABCD6、如图,在平面直角坐标系xOy中,ABC顶点的横、纵坐
3、标都是整数若将ABC以某点为旋转中心,旋转得到ABC,则旋转中心的坐标是()A(1,1)B(1,1)C(0,0)D(1,2)7、下列图形中既是轴对称图形,也是中心对称图形的是()ABCD8、如图,六边形ABCDEF的内角都相等,DAB60,ABDE,则下列结论:ABDE;EFADBC;AFCD;四边形ACDF是平行四边形;六边形ABCDEF既是中心对称图形,又是轴对称图形其中成立的个数是()A2个B3个C4个D5个9、如图,将ABC绕点B顺时针旋转50得DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()AAB=DBBCBD=80CABD=EDABCDBE10、把图
4、中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A30B90C120D180第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将正方形OEFG放在平面直角坐标系中,O是坐标原点,若点E的坐标为,则点G的坐标为_2、如图,在平面直角坐标系中,点C的坐标为(1,0),点A的坐标为(3,3),将点A绕点C顺时针旋转90得到点B,则点B的坐标为_3、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最长距离,在平面内有一个正方形,边长为4,中心为O,在正方形外有一点P,OP=4,当正方形绕着点O旋转时,则点P到正方形的最长距离的最小值为_4
5、、若点与点关于原点成中心对称,则_5、如图,在RtABC,B90,ACB50将RtABC在平面内绕点A逆时针旋转到ABC的位置,连接CC若ABCC,则旋转角的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上)(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形2、如图,在由边长为1个单位长度的小正方形组成的网格中,ABC的三个顶点分别是格点(1)将ABC以点C为旋转中心旋转180,画
6、出旋转后对应的;(2)将ABC先左移2个单位,再下移4个单位,画出平移后的3、图1、图2分别是77的正方形网格,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上,仅用无刻度直尺完成下列作图(1)在图1中确定点C、D(点C、D在小正方形的顶点上),并画出以AB为对角线的四边形,使其是中心对称图形,但不是轴对称图形,且面积为15;(2)在图2中确定点E、F(点E、F在小正方形的顶点上),并画出以AB为对角线的四边形,使其既是轴对称图形,又是中心对称图形,且面积为154、如图,等腰中,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转角,得到线段PQ,连接、M为
7、线段BQ的中点(1)若点P在线段BC上,且M恰好也为AP的中点,依题意在图1中补全图形:求出此时的值和的值;(2)写出一个的值,使得对于任意线段BC延长线上的点P,总有的值为定值,并证明;5、在85的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0)仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段CB绕点C逆时针旋转90,画出对应线段CD,并写出点D的坐标;(2)在线段AB上画点E,使BCE45(保留画图过程的痕迹)-参考答案-一、单选题1、A【解析】【分析】根据中心对称图形和轴对称图形的概念逐项分析即可
8、,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形中心对称图形:在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】A.既是轴对称图形又是中心对称图形,故该选项符合题意;B.是轴对称图形,但不是中心对称图形,故该选项不符合题意;C.不是轴对称图形,但是中心对称图形,故该选项不符合题意;D.既不是轴对称图形也不是中心对称图形,故该选项不符合题意故选A【考点】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中
9、心对称图形与轴对称图形的概念是解题的关键2、D【解析】【分析】根据中心对称的性质即可判断【详解】解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确;和不是对应角,D错误故选:D【考点】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形3、B【解析】【分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况【详解】解:观察图形可知,四边形AECF形状的变化依次为平行四边形菱形平行四边形矩形故选:B【考点】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的
10、位置关系即可求解4、D【解析】【分析】将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,所以点E每8次一循环,又因为20228=252.6,所以E2022坐标与E6坐标相同,求出点E6的坐标即可求解【详解】解:如图,将菱形与构成的图形绕点逆时针旋转,每次旋转45,即点E,绕点O,逆时针旋转,每次旋转45,由图可得点E每8次一循环,20228=252.6,E2022坐标与E6坐标相同,A(0,1),OA=1,菱形,ABO=ADO=30,AD=AB=2OA=2,OD=,ADE是等边三角形,ADE=60,DE=AD=2,ODE=90,DOE+DEO=90,过点
11、E6作E6Fx轴于F,OFE6=ODE=90,E6OE=90,DOE+E6OF=90,DEO=E6OF,OE=OE6,ODEE6FO(AAS),OF=DE=2,E6F=OD=,E6(2,-),E2022(2,-),故选:D【考点】本题考查图形变换规律,菱形的性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,本题属旋转规律型,坐标变换规律型问题,找出图形变换规律,即得出点E变换规律是解题的关键5、D【解析】【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一
12、条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项不符合题意;C既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D不是轴对称图形,是中心对称图形,故本选项符合题意故选:D【考点】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合6、A【解析】【分析】对应点连线的垂直平分线的交点即为旋转中心,然后直接写成坐标即可【详解】解:如图点O即为旋转中心,坐标为O(1,1) 故
13、选:A【考点】本题主要考查了旋转中心的确定方法,熟练掌握对应点连线的垂直平分线的交点即为旋转中心是解题的关键7、B【解析】【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项不符合题意故选:B【考点】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合8、D【解析】
14、【分析】根据六边形ABCDEF的内角都相等,DAB=60,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可【详解】六边形ABCDEF的内角都相等,EFA=FED=FAB=ABC=120DAB=60,DAF=60,EFA+DAF=180,DAB+ABC=180,ADEFCB,故正确,FED+EDA=180,EDA=ADC=60,EDA=DAB,ABDE,故正确FAD=EDA,CDA=BAD,EFADBC,四边形EFAD,四边形BCDA是等腰梯形,AF=DE,AB=CDAB=DE,AF=CD,故正确,连接CF与AD交于点O,连接DF、AE、DB、BECDA=DAF,AFCD,AF=C
15、D,四边形ACDF是平行四边形,故正确,同法可证四边形AEDB是平行四边形,AD与CF,AD与BE互相平分,OF=OC,OE=OB,OA=OD,六边形ABCDEF是中心对称图形,且是轴对称,故正确故选D【考点】本题考查了平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型9、C【解析】【分析】利用旋转的性质得ABCDBE ,BA=BD,BC=BE,ABD=CBE=50,C=E,再由A、B、E三点共线,由平角定义求出CBD=80,由三角形外角性质判断出ABDE【详解】解:ABC绕点B顺时针旋转50得DBE, AB=DB
16、,BC=BE,ABD=CBE=50,ABCDBE ,故选项A、D一定成立;点C的对应点E恰好落在AB的延长线上,ABD+CBE+CBD =180,.CBD=180-50-50=80,故选项B一定成立;又 ABD=E+BDE,ABDE,故选项C错误,故选C【考点】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等10、C【解析】【分析】根据图形的对称性,用360除以3计算即可得解【详解】解:3603=120,旋转的角度是120的整数倍,旋转的角度至少是120故选C【考点】本题考查了旋转对称图形,仔细观察图形求出旋转角是120的整数
17、倍是解题的关键二、填空题1、或【解析】【分析】先利用正方形的性质,利用旋转画出正方形OEFG,从而得到G点的坐标【详解】把EO绕E点顺时针(或逆时针)旋转90得到对应点为G(或G),如图,则G点的坐标为(2,-3)或G的坐标为(2,3),【考点】本题考查坐标与图形的变换,涉及旋转、正方形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键2、(2,2)【解析】【分析】过点A作AEx轴于E,过点B作BFx轴于F利用全等三角形的性质解决问题即可【详解】解:如图,过点A作AEx轴于E,过点B作BFx轴于FAECACBCFB90,ACE+BCF90,BCF+B90,ACEB,在AEC和CFB中,
18、AECCFB(AAS),AECF,ECBF,A(3,3),C(1,0),AECF3,OC1,ECBF2,OFCFOC2,B(2,2),故答案为:(2,2)【考点】本题考查坐标与图形变化旋转,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题3、#【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD的顶点时,点P到正方形的最长距离取得最小值,最小值为PA【详解】解:如图,OP过顶点A时,点O与这个图上所有点的连线中,OA最大,此时点P到正方形的最长距离取得最小值,最小值为PA,正方形ABCD边长为2,O为正方形中心,OAB=OBA=45,OACB,OA=
19、OB=,OP=4,最小值为PA=4-;故答案为:4-【考点】本题考查了旋转的性质,正方形的性质,理解点到图形的距离是解题的关键4、【解析】【分析】根据关于原点对称的点的特征求出的值,计算即可【详解】解:点与点关于原点成中心对称,故答案为:【考点】本题考查了关于原点对称,熟知关于原点对称的点横纵坐标均互为相反数是解题的关键5、100【解析】【分析】由,可得,由旋转的性质可得,由三角形内角和定理得,计算求解即可【详解】解:由旋转的性质可得故答案为:100【考点】本题考查了平行的性质,旋转的性质,旋转角,等边对等角,三角形的内角和定理等知识解题的关键在于找出旋转角三、解答题1、 (1)见解析(2)见
20、解析【解析】【分析】(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;(2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可(1)画法不唯一,如图1或图2等(2)画法不唯一,如图3或图4等【考点】本题考查作图旋转变换、作图平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形2、 (1)见解析(2)见解析【解析】【分析】(1)根据题意找到关于点C的对称点,顺次连接,即为所求;(2)根据题意将先左移2个单位,再下移4个单位,得到,顺次连接,则即为所求(1)如图,为所作(2)如图,为所作【考点】本题考查了画
21、旋转图形,平移,掌握旋转的性质与平移的性质是解题的关键3、 (1)见解析(2)见解析【解析】【分析】(1)画一个底为3,高为5的平行四边形即可;(2)画一个对角线分别为3,5的菱形AEBF即可(1)解:如图1中,平行四边形ACBD即为所求(2)解:如图2中,菱形AEBF即为所求【考点】本题考查作图-旋转变换,轴对称变换,特殊四边形等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题4、 (1)见解析;(2),理由见解析【解析】【分析】(1)由题意,画出图形即可;连接AQ,证四边形ABPQ是平行四边形,得ABPC,再根据是等腰三角形即可求解(2)令,延长PM至N,使得MNPM,连接BN、
22、AN、QN,证四边形BNQP是矩形,根据证,得出为等腰直角三角形,即可求解(1)如图所示,即为所求,连接AQ,如图所示,M为AP、BQ的中点,AM=PM,BM=QM,四边形ABPQ是平行四边形,ABPQ,AB/PQ,PC=PQ,ABPC,为等腰直角三角形,(2),延长PM至N,使得MNPM,连接BN、AN、QN,如图所示:M为线段BQ的中点,BM=QM,又MNPM,四边形BNQP是平行四边形,又CPQ=90,四边形BNQP是矩形,为等腰直角三角形,即,又AB=AC,即,即为等腰直角三角形,又,即的值为定值,当时,的值为定值【考点】本题是几何变换综合题,考查了等腰直角三角形、平行四边形的判定及性质、旋转的性质以及全等三角形的判定及性质,熟练利用辅助线构造平行四边形是解题的关键5、 (1)图见解析,点D坐标为(1,3)(2)见解析【解析】【分析】(1)利用网格特点和旋转的性质画出B点的对称点D即可;(2)作出CD=BC,以BD为对角线作矩形MBND,连接MN交BD于G,延长CG交AB于E,则点E即为所求;(1)解:如图,CD即为所求线段,点D坐标为(1,3);(2)解:如图,点E即为所求作的点【考点】本题考查了坐标与图形变换,旋转等知识,掌握点的坐标特征及旋转的特征是解本题的关键