收藏 分享(赏)

基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx

上传人:a**** 文档编号:958220 上传时间:2025-12-19 格式:DOCX 页数:25 大小:630.94KB
下载 相关 举报
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第1页
第1页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第2页
第2页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第3页
第3页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第4页
第4页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第5页
第5页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第6页
第6页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第7页
第7页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第8页
第8页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第9页
第9页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第10页
第10页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第11页
第11页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第12页
第12页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第13页
第13页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第14页
第14页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第15页
第15页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第16页
第16页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第17页
第17页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第18页
第18页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第19页
第19页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第20页
第20页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第21页
第21页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第22页
第22页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第23页
第23页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第24页
第24页 / 共25页
基础强化人教版九年级数学上册第二十三章旋转专题练习试卷(含答案详解).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十三章旋转专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在RtABC中,ACB90,A30,BC2将ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到EDC,

2、斜边DE交AC边于点F,则图中阴影部分的面积为()A3B1CD2、如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是()A68B20C28D223、下列命题是真命题的是()A一个角的补角一定大于这个角B平行于同一条直线的两条直线平行C等边三角形是中心对称图形D旋转改变图形的形状和大小4、如图,四边形是菱形,且,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,当取最小值时的长()AB3C1D25、2022年新年贺词中提到“人不负青山,青山定不负人”,下列四个有关环保的图形中,是轴对称图形,但不是中心对称图形的是()ABCD6、如图,已

3、知正方形的边长为4,以点C为圆心,2为半径作圆,P是上的任意一点,将点P绕点D按逆时针方向旋转,得到点Q,连接,则的最大值是()A6BCD7、如图,平面直角坐标系中,点在第一象限,点在轴的正半轴上,将绕点逆时针旋转,点的对应点的坐标是()ABCD8、下列图形中既是中心对称图形,又是轴对称图形的是()ABCD9、在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是()ABCD10、如图,中,若将绕点逆时针旋转得到,连接,则在点运动过程中,线段的最小值为()A1BCD2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系

4、中,直角如图放置,点A的坐标为,每一次将绕点O逆时针旋转90,第一次旋转后得到,第二次旋转后得到,依次类推,则点的坐标为_2、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_3、将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则_.(结果保留根号)4、如图,将的斜边AB绕点A顺时针旋转得到AE,直角边AC绕点A逆时针旋转得到AF,连结EF若,且,则_5、如图所示,五角星的顶点是一个正五边形的五个顶点,这个五角星绕中心至少旋转_度能和自身重合三、解答题(5小题,每小题10分,共计50分)1、如

5、图,在平面直角坐标系中,RtABC的三个顶点分别是,(1)将ABC以点C为旋转中心旋转180,画出旋转后对应的;平移ABC,若点A对应的点的坐标为,画出(2)若,绕某一点旋转可以得到(1)中的,直接写出旋转中心的坐标:_;2、如图是由边长为的小正方形构成的的网格,线段的端点均在格点上,请按要求画图画出一个即可(1)在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形3、图1、图2分别是77的正方形网格,网格中每个小正方形的边长均为1,点A、B在

6、小正方形的顶点上,仅用无刻度直尺完成下列作图(1)在图1中确定点C、D(点C、D在小正方形的顶点上),并画出以AB为对角线的四边形,使其是中心对称图形,但不是轴对称图形,且面积为15;(2)在图2中确定点E、F(点E、F在小正方形的顶点上),并画出以AB为对角线的四边形,使其既是轴对称图形,又是中心对称图形,且面积为154、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(1,4),B(3,1)(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180后的线段A2B25、如图,已知ABC中,AB=AC,把ABC绕A点沿顺时针方向旋转得到ADE,连接BD、

7、CE交于点F(1)求证:;(2)若AB=2,当四边形ADFC是菱形时,求BF的长-参考答案-一、单选题1、D【解析】【分析】根据题意及旋转的性质可得是等边三角形,则,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积【详解】解:如图,设与相交于点,旋转,是等边三角形,阴影部分的面积为故选D【考点】本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键2、D【解析】【分析】利用矩形的性质、旋转的性质及多边形内角和定理即可求得【详解】四边形ABCD为矩形,BAD=ABC=ADC=90,矩形AB

8、CD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,且ABC=D=90,BAB=90-68=22,即=22故选:D【考点】本题考查了旋转的性质,矩形的性质,多边形的内角和定理等知识,矩形性质的运用是关键3、B【解析】【分析】由补角的定义、平行线公理,中心对称图形的定义、旋转的性质分别进行判断,即可得到答案【详解】解:A、一个角的补角不一定大于这个角,故A错误;B、平行于同一条直线的两条直线平行,故B正确;C、等边三角形是轴对称图形,不是中心对称图形,故C错误;D、旋转不改变图形的形状和大小,故D错误;故选:B【考点】本题考查了补角的

9、定义、平行线公理,中心对称图形的定义、旋转的性质,以及判断命题的真假,解题的关键是熟练掌握所学的知识,分别进行判断4、D【解析】【分析】根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长【详解】解:如图:将ABG绕点B逆时针旋转60得到EBF,BE=AB=BC,BF=BG,EF=AG,BFG是等边三角形,BF=BG=FG,AG+BG+CG=EF+FG+CG,根据“两点之间线段最短”,当E,F,G,C共线时,AG+BG+CG的值最小,即等于EC的长,过E点作EHBC交CB的延长线于H,如上图所示:EBH=60,EH=3,EC=2EH=6,CBE=120,B

10、EF=30,EBF=ABG=30,,故选:D【考点】本题考查了旋转的性质,菱形的性质,等边三角形的性质,轴对称最短路线问题,正确的作出辅助线是解题的关键5、D【解析】【分析】轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称根据轴对称图形、和中心对称图形的概念,即可完成解题【详解】解:根据轴对称和中心对称的概念,选项A、B、C、D中,是轴对称图形的是B、D,是中心对称图形的是B故选:D【考点】本题主要轴对称图

11、形、中心对称图形的概念,熟练掌握知识点是解答本题的关键6、A【解析】【分析】连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E根据正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质求出AQ的长度,根据三角形三边关系确定当点Q与点E重合时,BQ取得最大值,最后根据线段的和差关系计算即可【详解】解:如下图所示,连接CP,AQ,以A为圆心,以AQ为半径画圆,延长BA交于E正方形ABCD的边长为4,的半径为2,AD=CD=AB=4,ADC=90,CP=2点P绕点D按逆时针方向旋转90得到点Q,QDP=90,QD=PDADC=QDPADC-QDC=QDP-QDC,即ADQ=CD

12、PAQ=CP=2AE=AQ=2P是上任意一点,点Q在上移动当点Q与点E重合时,BQ取得最大值为BEBE=AE+AB=6故选:A【考点】本题考查正方形的性质,旋转的性质,角的和差关系,全等三角形的判定定理和性质,三角形三边关系,线段的和差关系,综合应用这些知识点是解题关键7、B【解析】【分析】如图,作轴于解直角三角形求出,即可【详解】解:如图,作轴于 由题意:,故选:B【考点】本题考查坐标与图形变化旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题8、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称

13、图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【考点】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.9、B【解析】【分析】直接利用中心对称图形的性质得出答案即可【详解】解:如图,把标有序号的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,故选B【考点】本题考查了利用旋转设计图案和中心对称图形的定义,要知道,一个图形绕端点旋转180

14、所形成的图形叫中心对称图形10、B【解析】【分析】在AB上截取AQ=AO=1,利用SAS证明AQDAOE,推出QD=OE,当QDBC时,QD的值最小,即线段OE有最小值,利用勾股定理即可求解【详解】如图,在AB上截取AQ=AO=1,连接DQ,将AD绕A点逆时针旋转90得到AE,BAC=DAE=90,BAC-DAC =DAE-DAC,即BAD=CAE,在AQD和AOE中,AQDAOE(SAS),QD=OE,D点在线段BC上运动,当QDBC时,QD的值最小,即线段OE有最小值,ABC是等腰直角三角形,B=45,QDBC,QBD是等腰直角三角形,AB=AC=3,AO=1,QB=2,由勾股定理得QD=

15、QB=,线段OE有最小值为,故选:B【考点】本题考查了勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质,旋转的性质,熟记各图形的性质并准确识图是解题的关键二、填空题1、(,)【解析】【分析】由题意可得,(,),根据题意,每旋转四次,点B就又回到第一象限,用可知点在第三象限,即可得到答案【详解】在直角中,点A的坐标为,(,)由已知可得:第一次旋转后,如图,在第二象限,(,)第二次旋转后,在第三象限,(,)第三次旋转后,在第四象限,(,)第四次旋转后,在第一象限,(,)如此,旋转4次一循环点在第三象限,(,)故答案为:(,)【考点】本题考查了旋转变换,涉及含30度角的直角三角形,确定旋

16、转几次一循环是解题的关键2、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键3、【解析】【分析】先根据正方形的性质得到CD=1,CDA=90,再利用旋转的性质得CF=,根据正方形的性质得CFE=45,则可判断DFH为等腰直角三角形,从而计算CF-C

17、D即可【详解】四边形ABCD为正方形,CD=1,CDA=90,边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,CF=,CFDE=45,DFH为等腰直角三角形,DH=DF=CF-CD=-1故答案为-1【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质4、【解析】【分析】由旋转的性质可得,由勾股定理可求EF的长【详解】解:由旋转的性质可得,且,故答案为【考点】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键5、72【解析】【分析】根据题意,五角星的五个角

18、全等,根据图形间的关系可得答案【详解】根据题意,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过4次旋转而得到,每次旋转的度数为360除以5,为72度故答案为:72【考点】此题主要考查了旋转对称图形,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等三、解答题1、 (1)见解析(2)(1,2)【解析】【分析】(1)根据旋转的性质即可画出旋转后对应的;根据平移的性质,点A对应的点A2的坐标为(4,5),即可画出;(2)结合(1)和旋转的性质即可得旋转中心的坐标(1)解:如图,和即为所求;(2)解

19、:结合(1)中的图和旋转的性质,可得,旋转中心的坐标为:(1,2)【考点】本题考查了作图旋转变换,坐标与图形变化平移,解决本题的关键是掌握旋转的性质2、 (1)见解析;(2)见解析【解析】【分析】(1)根据旋转和轴对称的性质即可在图中以为边画一个四边形,使它的另外两个顶点在格点上,且该四边形是中心对称图形,但不是轴对称图形;(2)根据轴对称性质和中心对称性质即可在图中以为对角线画一个四边形,使它的另外两个顶点在格点上,且所画四边形既是轴对称图形又是中心对称图形(1)如图,四边形即为所求;(2)如图,四边形即为所求【考点】本题主要考查作图的旋转变换和轴对称变换,解题的关键是掌握中心对称和轴对称图

20、形的概念3、 (1)见解析(2)见解析【解析】【分析】(1)画一个底为3,高为5的平行四边形即可;(2)画一个对角线分别为3,5的菱形AEBF即可(1)解:如图1中,平行四边形ACBD即为所求(2)解:如图2中,菱形AEBF即为所求【考点】本题考查作图-旋转变换,轴对称变换,特殊四边形等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题4、(1)画图见解析,(2)画图见解析【解析】【分析】(1)分别确定向右平移4个单位后的对应点,再连接即可;(2)分别确定绕原点O旋转180后的对应点,再连接即可.【详解】解:(1)如图,线段即为所求作的线段,(2)如图,线段即为所求作的线段,【考点】本

21、题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键.5、(1)证明过程见解析;(2)BF=2-2【解析】【分析】(1)根据ABCADE得出AE=AD,BAC=DAE,从而得出CAE=DAB,根据SAS判定定理得出三角形全等;(2)根据菱形的性质得出DBA=BAC=45,根据AB=AD得出ABD是直角边长为2的等腰直角三角形,从而得出BD=2,根据菱形的性质得出AD=DF=FC=AC=AB=2,最后根据BF=BD-DF求出答案【详解】解析:(1)ABCADE且AB=AC, AE=AD,AB=AC, BAC+BAE=DAE+BAE, CAE=DAB,AECADB(3)四边形ADFC是菱形且BAC=45,DBA=BAC=45, 由(1)得AB=AD,DBA=BDA=45 ,ABD是直角边长为2的等腰直角三角形, BD=2,又四边形ADFC是菱形, AD=DF=FC=AC=AB=2, BF=BD-DF=2-2【考点】考点:(1)三角形全等的性质与判定;(2)菱形的性质

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1