1、九年级数学上册第二十一章一元二次方程难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是
2、3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)30002、方程的解是()A2或0B2或0C2D2或03、关于的一元二次方程有两个相等的实数根,则的值为()ABCD-4、设,是方程的两个实数根,则的值为()A2020B2021C2022D20235、若菱形两条对角线的长度是方程的两根,则该菱形的边长为()AB4CD56、一元二次方程的解是A,B,C,D,7、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C
3、12或16D12或168、在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x个队参赛,根据题意,可列方程为()ABCD9、如图,一次函数y=-3x+4的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)10、若一元二次方程的两根为,则的值是()A4B2C1D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x的一元二次方程ax2+bx+1=0(a0)的解是x=-1,则2021
4、-a+b的值是_2、若x1,x2是方程x24x20200的两个实数根,则代数式x122x1+2x2的值等于_3、若两个最简二次根式与是同类二次根式,则=_4、若关于x的一元二次方程有实数根,则n的取值范围是_5、若代数式有意义,则x的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件现服装店决定采取适当的降价措施,扩大销售量,增加盈利经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同
5、时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由2、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的总销售额增加了,求的值3、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此
6、方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值4、已知关于x的方程x2(m+2)x+(2m1)0(1)求证:方程恒有两个不相等的实数根(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积5、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少10千克,现该商场要保证每天盈利8000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?-参考答案-一、单选题1、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可
7、得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程2、B【解析】【分析】首先提公因式,再根据平方差公式分解因式,即可得出结论【详解】解:,或或,故选:B【考点】本题考查了高次方程,运用类比思想将高次方程转化为二次方程或一次方程是解题的关键3、A【解析】【分
8、析】由题意,根据一元二次方程根的判别式值为零,求可解【详解】解:由一元二次方程有两个相等实根可得,判别式等于0可得,得,故应选A【考点】本题考查了一元二次方程根的情况与判别式的关系,解答时注意=0方程有两个相等的实数根4、B【解析】【分析】由题意根据一元二次方程的解及根与系数的关系可得出,将其代入中即可得出答案【详解】解:,是方程的两个实数根,=2022-1=2021故选:B【考点】本题考查根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与系数的关系找出是解题的关键5、A【解析】【分析】先求出方程的解,即可得出AC4,BD2,根据菱形的性质求出AO和OD,根据勾股定理求出AD即可【
9、详解】解:解方程x26x80得:x4或2,即AC4,BD2,四边形ABCD是菱形,AOD90,AOOC2,BODO1,由勾股定理得:AD,故选:A【考点】本题考查了解一元二次方程和菱形的性质,能求出方程的解是解此题的关键6、A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转
10、化思想) 7、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键8、A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排3
11、6场比赛,列方程即可【详解】解:设有x个队参赛,根据题意,可列方程为:x(x1)36,故选A【考点】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.9、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为1,m(-3m+
12、4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键10、A【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,所以故选A【考点】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.二、填空题1、2022【解析】【分析】把x=-1代入方程可以得到-a+b的值,从而得到所求答案【详解】解:x=-1,a-b+1=0,-a+b=1,2021-a+b=2022,故答案为2022 【考点】本题考查一元二次方程的应用,熟练掌握
13、一元二次方程解的意义、等式的性质和代数式求值的方法是解题关键2、2028【解析】【分析】根据一元二次方程的解的概念和根与系数的关系得出x12-4x1=2020,x1+x2=4,代入原式=x12-4x1+2x1+2x2=x12-4x1+2(x1+x2)计算可得【详解】解:x1,x2是方程x24x20200的两个实数根,x1+x24,x124x120200,即x124x12020,则原式x124x1+2x1+2x2x124x1+2(x1+x2)2020+242020+82028,故答案为:2028【考点】本题主要考查根与系数的关系,解题的关键是掌握x1,x2是一元二次方程ax2+bx+c=0(a0
14、)的两根时,x1+x2=,x1x2=3、-3【解析】【分析】根据同类二次根式的定义可得,由此求解即可【详解】解:两个最简二次根式与是同类二次根式,或,两个根式都是最简根式,时,不符合题意,当a=3时,二次根式有意义且符合题意,故答案为-3【考点】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式4、n0【解析】【分析】根据平方的非负性可得结果【详解】解:关于x的一元二次方程有实数根,而,n0,故答案为:n0【考点】本题考查了一元二次方程的解,掌握根的判别方法是解题的关键5、3x且x【
15、解析】【分析】根据二次根式的性质,被开方数大于等于0;分母中有字母,分母不为0【详解】解:若代数式有意义,必有,解得解移项得两边平方得整理得解得解集为3x且x故答案为:3x且x【考点】本题考查了二次根式的概念:式子(a0)叫二次根式,(a0)是一个非负数注意:二次根式中的被开方数必须是非负数,否则二次根式无意义;当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于0三、解答题1、 (1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可(1)解:设每件服装降价x元由题
16、意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,=(-30)2-4600=900-2400=-15000,则原方程无实数解则不可能每天盈利2000元【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程2、 (1)该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)40【解析】【
17、分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【考点】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌
18、握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键3、 (1)证明见解析(2)1(答案不唯一)【解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可(1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有一根小于2,m2,m2,m为整数,满足条件的m的一个值为1【考点】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根4、 (1)证明见解析;(2
19、)方程的另一个根为:;以此两根为边长的直角三角形的面积为或【解析】【分析】(1)根据一元二次方程根的判别式证明即可;(2)将代入方程可确定m的值,然后求解一元二次方程得出方程的另一个解;分两种情况讨论直角三角形的面积:当该直角三角形的两直角边是1、3时;当该直角三角形的直角边和斜边分别是1、3时,利用勾股定理确定另一条直角边,然后求面积即可得(1)证明:,其中:,在实数范围内,m无论取何值,即,关于x的方程恒有两个不相等的实数根;(2)解:根据题意得:将代入方程可得:,解得,方程为,解得:或,方程的另一个根为;当该直角三角形的两直角边是1、3时,该直角三角形的面积为:;当该直角三角形的直角边和
20、斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为,则该直角三角形的面积为;综上可得,该直角三角形的面积为或【考点】题目主要考查一元二次方程根的判别式,解一元二次方程,勾股定理,分情况讨论三角形等,理解题意,熟练掌握一元二次方程的解法是解题关键5、每千克应涨价10元【解析】【分析】设每千克应涨价x元,根据每千克涨价1元,日销售量将减少10千克,每天盈利8000元,列出方程,求解即可【详解】解:设每千克应涨价x元,由题意得:,解得,要使顾客得到实惠,应取x=10,答:每千克应涨价10元【考点】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系