1、九年级数学上册第二十一章一元二次方程定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、定义运算:例如则方程的根的情况为()A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根2、若一
2、元二次方程的两根为,则的值是()A4B2C1D23、用配方法解方程时,下列变形正确的是()ABCD4、若|x24x+4|与互为相反数,则x+y的值为()A3B4C6D95、下列方程中,有两个相等实数根的是()ABCD6、一元二次方程的解是A,B,C,D,7、关于的方程(、为常数,)的解是,则方程的解是().A,B,C,D,8、用配方法解一元二次方程,配方正确的是()ABCD9、设方程的两根分别是,则的值为()A3BCD10、已知关于x的一元二次方程(m1)x22x10有实数根,则m的取值范围是()Am2Bm2Cm2且m1Dm2且m1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计2
3、0分)1、一元二次方程的解为_2、关于的方程,k=_时,方程有实数根3、用换元法解方程1,设y,那么原方程可以化为关于y的整式方程为_4、关于x的方程x2-kx-2k=0的两个根的平方和为12,则k=_5、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程_三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC的BC边与x
4、轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO(1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值2、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系
5、式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?3、关于x的一元二次方程ax2+bx+1=0(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根4、解下列方程:(1);(2)5、解方程:(3x-1)2-250-参考答案-一、单选题1、A【解析】【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案【详解】解:根据定义得: 原方程有两个不相等的实数根,故选【考点】本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键2、A【解析】【分析】
6、根据一元二次方程根与系数的关系即可求解.【详解】根据题意得,所以故选A【考点】此题主要考查根与系数的关系,解题的关键是熟知根与系数的性质.3、B【解析】【分析】将方程的常数项移到右边,两边都加上,左边化为完全平方式,右边合并即可得到结果【详解】移项得:,配方得:,即,故选:B【考点】本题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解4、A【解析】【详解】根据题意得:|x24x+4|+=0,所以|x24x+4|=0,=0,即(x2)2=0,2
7、xy3=0,所以x=2,y=1,所以x+y=3故选A5、A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键6、A【解析】【分析】先把方程化为一般式, 然后利用因式分解法解方程 【详解】解:,或,所以,故选【考点】本题考查了解一元二次方程-因式分解法:
8、 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了(数学转化思想) 7、D【解析】【分析】先用直接开平方法解出,然后再解出,对比两个解的关系,即可得到答案.【详解】解:,解得:,解得:,故选择:D.【考点】本题考查了一元二次方程的解,解题的关键是掌握正确解出一元二次方程的解8、A【解析】【分析】按照配方法的步骤进行求解即可得答案【详解】解:,移项得,二次项系数化1的,配方得,即,故选:A【考点】本题考查了配方法解一元二
9、次方程,配方法的一般步骤为(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方9、A【解析】【分析】本题可利用韦达定理,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求解即可【详解】由可知,其二次项系数,一次项系数,由韦达定理:,故选:A【考点】本题考查一元二次方程根与系数的关系,求解时可利用常规思路求解一元二次方程,也可以通过韦达定理提升解题效率10、D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:因为关于x的一元二次方程x22xm0有实数根,所以b24ac2
10、24(m1)10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【考点】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键二、填空题1、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程,本题关键在于分情况讨论2、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取
11、值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键3、y2+y20【解析】【分析】可根据方程特点设y,则原方程可化为y1,化成整式方程即可【详解】解:方程1,若设y,把设y代入方程得:y1,方程两边同乘y,整理得y2+y20故答案为:y2+y20【考点】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题
12、技巧4、2【解析】【分析】设关于x的方程x2-kx-2k=0的两实数根分别为x1、x2,根据根与系数的关系可求出x1+x2=k,x1x2=-2k再利用完全平方式可知,即可得到方程,解出方程再利用根的判别式求出k的取值范围,舍去不合题意的解即可【详解】设关于x的方程x2-kx-2k=0的两实数根分别为x1、x2,则x1+x2=k,x1x2=-2k原方程两实数根的平方和为12,即解得:,方程有两实数根,即,或舍去综上故答案为:2【考点】本题考查一元二次方程根的判别式与根与系数的关系,熟记一元二次方程根的判别式和根与系数的关系的公式是解答本题的关键5、【解析】【分析】设每件衬衫降价x元,根据每件衬衫
13、每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键三、解答题1、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标
14、,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可(1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时,当时,;(3)解:,当MAB=90时,解得,当A
15、BM=90时,解得m=7,当AMB=90时,解得,m的值为3或1或2或7【考点】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键2、(1)yx+150(0x90);(2)70【解析】【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式(2)根据想获得4000元的利润,列出方程求解即可【详解】(1)设y与x的函数关系式为ykx+b(k0),根据题意得,解得故y与x的函数关系式为yx+150(0x90);(2)根据题意得(x+150)(x20)4000,解得x170,x210090(不合题意,舍去
16、)答:该批发商若想获得4000元的利润,应将售价定为70元【考点】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出方程3、(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x1=x2=1【解析】【详解】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数
17、根.当时,方程有两个相等的实数根.当时,方程没有实数根.4、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】解:(1),a=3,b=4,c=1, ,;(2)【考点】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键5、【解析】【分析】移项,根据平方根的定义开方,转化为两个一元一次方程,分别求出一次方程的解即可得到原方程的解【详解】移项,得:,或,【考点】本题考查了直接开方法求一元二次方程的解,直接开方法是根据平方根的定义来求解的,方程左边为完全平方式,右边为非负常数