1、人教版七年级数学上册第四章几何图形初步同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中,AB、AC是射线,图中共有()条线段A7B8C9D112、A,B,C,D四个村庄之间的道路如图,从A去D
2、有以下四条路线可走,其中路程最短的是()AACBDBACDCAEDDABD3、下列几何体中,圆柱体是()ABCD4、下列说法中,错误的有()(1)射线比直线短;(2)在所有连结两点的线中,线段最短;(3)连接A、B两点得直线AB;(4)连结两点的线段叫做两点的距离;A1个B2个C3个D4个5、如图,OC平分且,则的度数为()ABCD6、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A代表B代表C代表D代表7、如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x2y+z的值是()A1B4C7D98、给出下列各说法:圆柱由3个面围成,这3个面都是平的;圆锥
3、由2个面围成,这2个面中,1个是平的,1个是曲的;球仅由1个面围成,这个面是平的;正方体由6个面围成,这6个面都是平的其中正确的为()ABCD9、永定河,“北京的母亲河”近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B两地间的河道改直后大大缩短了河道的长度这一做法的主要依据是()A两点确定一条直线B垂线段最短C过一点有且只有一条直线与已知直线垂直D两点之间,线段最短10、下面四个图形中,经过折叠能围成如图所示的几何图形的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将如图所示的平面展开图折叠成正方体后,“爱”的对面的汉字是_2、已知
4、点是线段的中点,点是线段的中点,那么线段的比值是_3、如图,与相交于点O,是的平分线,且恰好平分,则_度4、直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是_.5、已知B是线段AD上一点,C是线段AD的中点,若AD10,BC3,则AB_三、解答题(5小题,每小题10分,共计50分)1、如图,A是数轴上表示的点,B是数轴上表示10的点,C是数轴上表示18的点,点A,B,C在数轴上同时向数轴的正方向运动,点A运动的速度是6个单位长度/秒,点B和点C运动的速度是3个单位长度/秒设三个点运动时间为t(秒)(1)直接写出t秒后A、B、C三点在数轴上所表示的数;(2)当t为何值时,线段(单位长
5、度)?(3)当时,设线段的中点为P,线段的中点为M,线段的中点为N,求时,t的值2、按照下列要求作图:(1)画线段;(2)以为顶点,为一边,画;(3)以为顶点,为一边,在的同侧画,与相交于点;(4)取的中点,联结3、 (1)下面这些基本图形和你很熟悉,试写出它们的名称;(2)将这些几何体分类,并写出分类的理由4、【新知理解】如图,点在线段上,图中共有三条线段、和,若其中有一条线段的长度是另外一条线段长度的2倍,则称点是线段的“奇点”(1)线段的中点_这条线段的“奇点”(填“是”或“不是”)【初步应用】(2)如图,若,点是线段的奇点,则;【解决问题】(3)如图,已知动点从点出发,以速度沿向点匀速
6、移动:点从点出发,以的速度沿向点匀速移动,点、同时出发,当其中一点到达终点时,运动停止,设移动的时间为,请直接写出为何值时,、三点中其中一点恰好是另外两点为端点的线段的奇点?5、如图,O在直线AC上,OD是AOB的平分线,OE在BOC内(1)若OE是BOC的平分线,则有DOE=90,试说明理由;(2)若BOE=EOC,DOE=72,求EOC的度数-参考答案-一、单选题1、C【解析】【分析】根据线段的定义,线段有两个端点,找出所有的线段后再计算个数【详解】解:图中的线段有AD、CD、BD、DE、BE、CE、BC、AB、AC,共有9条故选:C【考点】本题主要考查了线段的定义,熟练掌握线段有两个端点
7、,还要注意按照一定的顺序找出线段,要做到不遗漏,不重复是解题的关键2、C【解析】【分析】利用两点之间线段最短可直接得出结论【详解】解析:利用两点之间线段最短的性质得出,路程最短的是:AED,故选:C【考点】本题考查了两点之间的距离,熟知两点之间线段最短是解题的关键3、C【解析】【分析】根据圆柱体的定义,逐一判断选项,即可【详解】解:A. 是圆锥,不符合题意;B. 是圆台,不符合题意;C. 是圆柱,符合题意;D. 是棱台,不符合题意,故选C【考点】本题主要考查几何体的认识,掌握圆锥、圆柱、圆台、棱台的定义,是解题的关键4、C【解析】【分析】根据直线,射线,线段的定义逐一判断即可【详解】(1)射线
8、和直线都无线延申,无法比较,故此说法错误;(2)在所有连结两点的线中,线段最短,故此说法正确;(3)连接A、B两点得到的因为线段,故此说法错误;(4)连结两点的线段的长度叫做两点的距离,此说法错误故选:【考点】本题主要考查了直线,射线,线段的定义,熟悉掌握直线,射线,线段的概念是解题的关键5、B【解析】【分析】根据OC平分且可得,再结合即可求得答案【详解】解:OC平分且,又,故选:B【考点】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键6、A【解析】【分析】根据正方体展开图的对面,逐项判断即可【详解】解:由正方体展开图可知,的对面点数是1;的对面点数是2;的对面点数是4;骰子相对两
9、面的点数之和为7,代表,故选:A【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对7、A【解析】【分析】将展开图还原成立体图,再结合相反数的概念即可求解【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“8”是相对面,“y”与“2”是相对面,“z”与“3”是相对面,相对面上所标的两个数互为相反数,x8,y2,z3,x2y+z82231故答案是:A【考点】本题主要考察正方体展开图和空间想象能力、相反数的概念,属于基础题型,难度不大解题的关键是空间想象能力,即将展开图还原成立体图形注意:正方体的表面展开图,相对的面之间一定相隔一
10、个正方形8、C【解析】【分析】根据圆柱、圆锥、正方体、球,可得答案【详解】解:圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故错误;圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故正确;球仅由1个面围成,这个面是曲面,故错误;正方体由6个面围成,这6个面都是平面,故正确;故选:C【考点】本题考查了认识立体图形,熟记各种图形的特征是解题关键9、D【解析】【分析】根据线段的性质分析得出答案【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的
11、含义是解题的关键10、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案【详解】三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B故选B【考点】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养二、填空题1、家【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”字对面的字是“丽”,“爱
12、”字对面的字是“家”,“美”字对面的字是“乡”故答案为:家【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题2、【解析】【分析】根据题意易得,然后直接进行比值即可【详解】解:由题意得,【点睛】本题主要考查比值及化简比,熟练掌握求比值和化简比的方法是解题的关键3、60【解析】【分析】先根据角平分线的定义、平角的定义可得,再根据对顶角相等即可得【详解】解:设,是的平分线,平分,又,解得,即,由对顶角相等得:,故答案为:60【点睛】本题考查了角平分线的定义、平角的定义、对顶角相等,熟练掌握角平分线的定义是解题关键4、圆锥【解析】【分析】根据:面动成体,
13、将直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥【详解】解:将直角三角形纸片绕它的直角边所在的直线旋转一周,得到的几何体是圆锥故答案为:圆锥【点睛】本题考查几何体, 解题的关键是有一定的空间想象能力,理解面动成体5、2或8【解析】【分析】根据题意,正确画出图形,分两种情况讨论:当点B在中点C的左侧时,ABACBC;当点B在中点C的右侧时,ABAC+BC【详解】解:如图,C是线段AD的中点,ACCDAD5,当点B在中点C的左侧时,ABACBC2当点B在中点C的右侧时,ABAC+BC8AB2或8【点睛】本题考查线段中点的有关计算注意此类题要分情况画图,然后根据中点的概念以及图形进
14、行相关计算三、解答题1、 (1),;(2)或(3)或【解析】【分析】(1)分别用A、B、C对应的数加上三点运动的距离,即可求解;(2)由(1)可得,即可求解;(3)根据题意可得秒后线段OA的中点为P所表示的数为,线段OB的中点为M所表示的数为, 线段OC的中点为N所表示的数为,再由,可得,然后分三种情况讨论,即可求解(1)解:根据题意得:秒后,A,B,C分别表示的数为: ,;(2)解:根据题意得:AC=,解得:或;(3)解:秒后,A,B,C分别表示的数为: , 秒后线段OA的中点为P所表示的数为,线段OB的中点为M所表示的数为, 线段OC的中点为N所表示的数为,即, 当时, ,解得:;当时,
15、解得:(舍去);当时, ,解得:;综述:或【考点】本题主要考查了一元一次方程的应用,绝对值方程,数轴上两点间的距离,动点问题,利用数形结合思想和分类讨论思想解答是解题的关键2、(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)画图见解析;【解析】【分析】(1)利用直尺画线段AB=40 mm; (2)利用量角器以A为顶点,AB为一边,画BAM=60;(3)利用量角器以B为顶点,BA为一边,在BAM的同侧画ABN=30,AM与BN相交于点C;(4)利用直尺画线段【详解】解:(1)如图,画 (2)如图,以A为顶点,AB为一边,画 (3)如图,以B为顶点,BA为一边,在BAM的同侧画ABN=
16、30,AM与BN相交于点C,(4)如图,在线段上,画,连接 【考点】本题主要考查利用作图工具熟练进行作图,考查了线段的中点的含义,掌握三角尺与量角器的使用是解题的关键3、 (1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱(2)按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体【解析】【分析】(1)针对立体图形的特征,直接填写它们的名称即可;(2)按柱体、锥体、球体进行分类即可【详解】解:(1)从左向右依次是球、圆柱、圆锥、长方体、三棱柱(2)观察图形,按柱、锥、球划分,则有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体【考点】本题考查了立体图形的认识和几何体的分类,熟记
17、立体图形的特征是解决本题的关键4、(1)是;(2)6或9或12;(3)或或或或或6【解析】【分析】(1)根据“奇点”的定义即可求解;(2)分当N为中点时, 当N为CD的三等分点,且N靠近C点时,当N为CD的三等分点,且N靠近D点时,进行讨论求解即可;(3)分由题意可知A不可能为P、Q两点的巧点,此情况排除;当P为A、Q的巧点时;当Q为A、P的巧点时;进行讨论求解即可【详解】(1)一条线段的长度是另外一条线段长度的2倍,则称这个点为该线段的“奇点”,线段的中点是这条线段的“奇点”,(2),点N是线段CD的奇点,可分三种情况,当N为中点时,,当N为CD的三等分点,且N靠近C点时,,当N为CD的三等
18、分点,且N靠近D点时,(3),秒后,由题意可知A不可能为P、Q两点的巧点,此情况排除;当P为A、Q的巧点时,有三种情况;1)点P为AQ中点时,则,即,解得:2)点P为AQ三等分点,且点P靠近点A时,则,即,解得:3)点P为AQ三等分点,且点P靠近点Q时,则,即,解得:当Q为A、P的巧点时,有三种情况;1)点Q为AP中点时,则,即,解得:2)点Q为AP三等分点,且点Q靠近点A时,则,即,解得:3)点Q为AP三等分点,且点Q靠近点P时,则,即,解得:【考点】考查了两点间的距离,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解5、(1)见解析;(
19、2)72【解析】【分析】(1)根据角平分线的定义可以求得DOE=AOC=90;(2)设EOB=x度,EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法【详解】(1)如图,因为OD是AOB的平分线,OE是BOC的平分线,所以BOD=AOB,BOE=BOC,所以DOE=(AOB+BOC)=AOC=90;(2)设EOB=x,则EOC=2x,则BOD=(1803x),则BOE+BOD=DOE,即x+(1803x)=72,解得x=36,故EOC=2x=72【考点】本题考查了角平分线的定义设未知数,把角用未知数表示出来,列方程组,求解角平分线的运用,为解此题起了一个过渡的作用