1、京改版八年级数学上册第十章分式同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若,则下列分式化简正确的是()ABCD2、在代数式,中属于分式的有()A2个B3个C4个D5个3、(为正整数)的值是(
2、)ABCD4、计算的结果是()ABCD5、如果,那么代数式的值是()ABC1D36、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为ABCD7、下列等式成立的是()A(3)29B(3)2Ca14Da2b68、已知,用a表示c的代数式为()ABCD9、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快
3、2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD10、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_2、计算:_3、若关于x的分式方程有增根,则a=_4、计算:(1)_;(2)_5、关于的分式方程的解为正数,则的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、已知,求的值2、先化简再求值:,其中3、解方程:(1)(2)4、先化
4、简,再求值:( )(x+2),其中x是不等式组的整数解5、先化简,再求值:,其中m2-参考答案-一、单选题1、D【解析】【分析】根据ab,可以判断各个选项中的式子是否正确,从而可以解答本题【详解】ab,选项A错误;,选项B错误;,选项C错误;,选项D正确;故选:D【考点】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法2、A【解析】【分析】判断分式的依据是:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,所以是分式的是:,共有2个,故选:A【考点】本题考查分式的定
5、义,能够准确判断代数式是否为分式是解决本题的关键3、B【解析】【分析】根据分式的乘方计算法则解答【详解】故选:B【考点】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键4、D【解析】【分析】先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可【详解】解: ,故选D【考点】本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解5、解得:a6且a故选:A【考点】此题考查了分式方程的解,始终注意分母不为0这个条件2C【解析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入
6、法求值即可【详解】解:=1故选C【考点】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键6、C【解析】【分析】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,根据甲的工效乙的工效,列出方程即可【详解】乙工人每小时搬运x件电子产品,则甲工人每小时搬运件电子产品,依题意得:,故选C【考点】本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键7、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可【详解】解:A、(-3)2=9-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24a14,本选项错误;
7、D、(-a-1b-3)-2=a2b6-a2b6,本选项错误故选B【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则8、D【解析】【分析】将代入消去b,进行化简即可得到结果【详解】解:把代入,得,故选D【考点】本题考查了分式的混合运算,列代数式熟练掌握运算法则是解题的关键9、D【解析】【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【考点】本题
8、考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键10、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组,解不等式组即可得到答案【详解】通分得:,x=2-k,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分式方程与不等式的综合应用,解分式方程得到关于k的不等式组是解题关键,注意分式有意义的条件,避免漏解二、填空题1、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;
9、(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解2、5【解析】【分析】根据绝对值和零指数幂进行计算即可【详解】解:,故答案为:5【考点】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键3、【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可【详解】解:,去分母得: xa3-x,由分式方程有增根,得到x30,即x3,代入整式方程得:3a3-3,解得:a3故答案为:3【考点】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字
10、母的值4、 #0.5 【解析】【分析】(1)由负整数指数幂的运算法则计算即可(2)由零指数幂的运算法则计算即可【详解】(1)(2)故答案为:,【考点】本题考查了负整数指数幂以及零指数幂的运算法则,即任何不等于0的数的0次幂都等于1;是由在,时转化而来的,也就是说当同底数幂相除时,若被除式的指数小于除式的指数,则转化成负指数幂的形式5、且【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出的取值范围,进而结合分式方程有意义的条件分析得出答案【详解】去分母得:,解得:,解得:,当时,不合题意,故且故答案为且【考点】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键三、解答题1、
11、【解析】【分析】根据条件可得,化简所求分式可得,代入求职即可;【详解】由,可知且,解得,原式将代入,得原式【考点】本题主要考查了分式的化简求值,准确计算是解题的关键2、,【解析】【分析】利用分式的加减法和乘除法对分式进行计算和化简,再把x2022代入计算即可得出结果【详解】解:当时,原式【考点】本题考查了分式的化简求值,掌握分式的加减法法则和乘除法法则是解题的关键3、(1);(2)无解【解析】【分析】(1)先通分,把分母变为,再去分母,求出解,最后检验;(2)先通分,把分母变为,再去分母,求出解,最后检验【详解】解:(1),经检验是原方程的解;(2),经检验是增根,原方程无解【考点】本题考查解
12、分式方程,解题的关键是掌握解分式方程的方法,需要注意结果要检验4、2【解析】【分析】先根据分式运算顺序和法则进行化简,再解不等式组,根据分式有意义的条件确定x的值,代入求解即可【详解】原式()() ,由,解得:1x2,x是整数,x0,1,2,由分式有意义的条件可知:x不能取0,1,故x2,原式2【考点】本题考查了分式化简求值和解不等式组,解题关键是熟练运用分式运算法则和解不等式的方法进行求解,注意:代入的数值要使分式有意义5、,2【解析】【分析】先用平方差公式因式分解,化除法为乘法,约分化简即可【详解】解:=,当m2时,原式2【考点】本题考查了分式的加减乘除混合运算,因式分解,约分,熟练掌握分式混合运算的基本法则是解题的关键