收藏 分享(赏)

基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx

上传人:a**** 文档编号:957745 上传时间:2025-12-19 格式:DOCX 页数:25 大小:588.35KB
下载 相关 举报
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第1页
第1页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第2页
第2页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第3页
第3页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第4页
第4页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第5页
第5页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第6页
第6页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第7页
第7页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第8页
第8页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第9页
第9页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第10页
第10页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第11页
第11页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第12页
第12页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第13页
第13页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第14页
第14页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第15页
第15页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第16页
第16页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第17页
第17页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第18页
第18页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第19页
第19页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第20页
第20页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第21页
第21页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第22页
第22页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第23页
第23页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第24页
第24页 / 共25页
基础强化京改版八年级数学上册第十二章三角形综合测评试卷(解析版含答案).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABC和EDF中,BD90,AE,点B,F,C,D在同一条直线上,再增加一个条件,不能判定ABCEDF的是(

2、)AABEDBACEFCACEFDBFDC2、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D13、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个4、如图,已知ABAC,ADAE,AB=AC,AD=AE,则BFD的度数是()A60B90C45D1205、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD6、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方

3、形设直角三角形较长直角边长为a,较短直角边长为b若ab=8,大正方形的面积为25,则小正方形的边长为A9B6C4D37、一个三角形具备下列条件仍不是等边三角形的是()A一个角的平分线是对边的中线或高线B两边相等,有一个内角是60C两角相等,且两角的和是第三个角的2倍D三个内角都相等8、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD9、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C

4、的距离是()A15海里B20海里C30海里D60海里10、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC点BD点A第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线为线段的垂直平分线,交于,在直线上取一点,使得,得到第一个三角形;在射线上取一点,使得;得到第二个三角形;在射线上取一点,使得,得到第三个三角形依次这样作下去,则第2020个三角形中的度数为_2、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_3、如果三角形两条边分别为3和5,则周长L的

5、取值范围是_4、如图,在等腰中, ,则边上的高是 _5、如图,在中,按以下步骤作图:以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E分别以点D、E为圆心,大于的同样长为半径作弧,两弧交于点F作射线BF交AC于点G如果,的面积为18,则的面积为_三、解答题(5小题,每小题10分,共计50分)1、在中,在的外部作等边三角形,E为的中点,连接并延长交于点F,连接(1)如图1,若,求和的度数;(2)如图2,的平分线交于点M,交于点N,连接补全图2;若,求证:2、某班举行文艺晚会,桌子摆成两条直线(),桌面上摆满了橘子,桌面上摆满了糖果,坐在C处的小明先拿橘子再拿糖果,然后回到座位,请你帮他设

6、计路线,使其行走的总路程最短(保留作图痕迹)3、如图,D是ABC的边AC上一点,点E在AC的延长线上,EDAC,过点E作EFAB,并截取EFAB,连接DF求证:DF=CB4、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点5、如图,点、在同一条直线上,请你从下面三个条件中,选出两个作为已知条件,另一个作为结论,推出一个正确的命题;平分(1)上述问题有哪几种正确命题,请按“”的形式一一书写出来;(2)选择(1)中的一个真命题加以说明-参考答案-一、单选题1、C【解析】【分析】根据全等三角形的判定方法即可判断.【详解】A. ABED,可用ASA判定ABCEDF;B. ACEF,可用AAS

7、判定ABCEDF;C. ACEF,不能用AAA判定ABCEDF,故错误;D. BFDC,可用AAS判定ABCEDF;故选C.【考点】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.2、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键3、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=

8、180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.4、B【解析】【分析】先证BAECAD,得出B

9、=C,再证CFB=BAC=90即可【详解】解:ABAC,ADAE,BAC=DAE=90,BAE=CAD,在BAE和CAD中,,BAECAD,B=C,BGA=CGF,CFB=BAC=90,BFD=90,故选:B【考点】本题考查了全等三角形的判定与性质,解题关键是确定全等三角形并通过8字型导角求出度数5、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键6、D【解析】【分

10、析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,或(舍去),故选:D【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型7、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60,根据有一个角为60的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍

11、,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.8、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质9、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可

12、【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大10、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题1、【解析】【分析】根据前3个三角形总结出的规律,利用规律即可解题.【详解】第一个三角形中,第二个三角形中,同理,第三

13、个三角形中,第2020个三角形中的度数为故答案为【考点】本题主要考查垂直平分线的性质,根据垂直平分线的性质找到规律是解题的关键.2、ED=FD(答案不唯一,E=CFD或DBE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答案为:ED=FD(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角

14、形全等的判定方法是解题的关键3、10L16【解析】【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3,解得2x8,2+3+5x+3+58+3+5,周长L=x+3+5,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键4、4【解析】【分析】根据题意作出高线,根据勾股定理即可得出结论【详解】解:如图所示,过点作于点,故答案为:4【考点】本题考查的是勾股定理的应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解

15、答此题的关键5、27【解析】【分析】由作图步骤可知BG为ABC的角平分线,过G作GHBC,GMAB,可得GM=GH,然后再结合已知条件和三角形的面积公式求得GH,最后运用三角形的面积公式解答即可【详解】解:由作图作法可知:BG为ABC的角平分线过G作GHBC,GMABGM=GH,故答案为27【考点】本题考查了角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键三、解答题1、(1),;(2)作图见解析;见解析【解析】【分析】(1)结合等腰三角形和等边三角形的性质,可得ABD=ADB,从而求解出角度后,再计算BDF即可;(2)根据尺规作图作角平分线的方法画

16、出的平分线即可;设ACM=BCM=,由AB=AC,推出ABC=ACB=2,可得NAC=NCA=,DAN=60+,由ABNADN(SSS),推出ABN=ADN=30,BAN=DAN=60+,BAC=60+2,在ABC中,根据BAC+ACB+ABC=180,构建方程求出,再证明MNB=MBN即可解决问题【详解】(1),为等边三角形,又E为的中点,由“三线合一”知,;(2)如图所示:利用尺规作图的方法得到CP,交于点M,交于点N;如图所示,连接,平分,设,在等边三角形中,为的中点,在和中,在中,【考点】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运

17、用各类图形的性质进行综合分析2、见解析【解析】【分析】作点C关于直线AO的对称点C,点C关于直线OB的对称点D,连接CD交AO于M,交OB于N,则路线CM-MN-NC即为所求【详解】如图所示,小明的行走路线为,此时所走的总路程为的长,总路程最短【考点】本题考查了轴对称-最短路线问题,作图-应用与设计作图,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图解题的关键是利用了轴对称的性质,两点之间线段最短的性质求解3、证明过程见解析【解析】【分析】根据EFAB,得到,再根据已知条件证明,即可得解;【详解】EFAB,在和中,;【考点】本题主要考查了全等三角形的判定

18、与性质,准确分析判断是解题的关键4、详见解析.【解析】【分析】过点A作BC的垂线,作出B的平分线,二者交点即为所求的点.【详解】如图:P点即为所求【考点】本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.5、 (1)有三种正确命题,命题1:;命题2:;命题3:(2)答案不唯一,见解析【解析】【分析】(1)根据题意,结合平行线的性质和角平分线的性质,选择两个条件做题设,一个条件做结论,得到正确的命题(2)任选一个命题,根据平行线的性质,角平分线的性质和三角形内角和定理即可证明(1)解:上述问题有三种正确命题,分别是:命题1:;命题2:;命题3:(2)解:选择命题1:证明:,平分选择命题2:证明:,平分,选择命题3:证明:平分,【考点】本题考查写出一个命题并求证,正确利用平行线的性质和角平分线的性质写出命题并求证是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1