1、京改版八年级数学上册第十二章三角形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知ABC中,BD、CE分别是ABC的角平分线,BD与CE交于点O,如果设BACn(0n180),那么BOE
2、的度数是()A90nB90nC45+nD180n2、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD3、如图,ABC和ECD都是等腰直角三角形,ABC的顶点A在ECD的斜边DE上下列结论:ACEBCD;DABACE;AE+ACCD;ABD是直角三角形其中正确的有()A1个B2个C3个D4个4、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:55、给出下列命题,正确的有()个等腰三角形的角平分线、中线和高重合; 等腰三角形两腰上的高相等; 等腰三角形最小边
3、是底边;等边三角形的高、中线、角平分线都相等;等腰三角形都是锐角三角形A1个B2个C3个D4个6、如图,在RtABC中,ABC90,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF3,AG2,则BC()A5B4C2D27、若一个直角三角形的两边长为4和5,则第三边长为()A3BC8D3或8、如图,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D19、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定10、等腰
4、三角形有两条边长为5cm和9cm,则该三角形的周长是A19cmB23cmC19cm或23cmD18cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合若BC=8,CD=6,则CF的长为_2、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)3、如图,一个高,底面周长的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少为_长4、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_5
5、、如图,铁路MN和公路PQ在O点处交汇,公路PQ上A处点距离O点240米,距离MN 120米,如果火车行驶时,周围两百米以内会受到噪音的影响,那么火车在铁路MN上沿ON方向,以144千米/时的速度行驶时,A处受噪音影响的时间是_s三、解答题(5小题,每小题10分,共计50分)1、如图,点E在边AC上,已知ABDC,AD,BCDE,求证:DEAE+BC2、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听
6、到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?3、如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B作BFAE交ED于F,且EM=FM(1)若AE=5,求BF的长;(2)若AEC=90,DBF=CAE,求证:CD=FE4、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA4km,CB6km,DAAB于点A,CBAB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长5、如图,在四边形ABCD中,BAD90,
7、点E在AC上,ECEDDA求CAB的度数-参考答案-一、单选题1、A【解析】【分析】根据BD、CE分别是ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解【详解】解:BD、CE分别是ABC的角平分线,故答案选:A【考点】本题考查三角形的内角和定理和外角的性质涉及角平分线的性质三角形的内角和定理:三角形的内角和等于三角形的一个外角等于与它不相邻的两个内角之和2、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,BCA=45,D=90,ACD=ECDBCA=6045=
8、15,=180DACD=1809015=75, 故选:B【考点】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键3、C【解析】【分析】根据等腰直角三角形的性质得到CACB,CABCBA45,CDCE,ECDE45,则可根据“SAS”证明ACEBCD,于是可对进行判断;利用三角形外角性质得到DAB+BACE+ACE,加上CABE45,则可得对进行判断;利用CECD和三角形三边之间的关系可对进行判断;根据ACEBCD得到BDCE45,则可对进行判断【详解】ABC和ECD都是等腰直角三角形,CACB,CABCBA45,CDCE,ECDE45,ACE+ACDACD+BCD,ACE
9、BCD,在ACE和BCD中,ACEBCD(SAS),所以正确;DACE+ACE,即DAB+BACE+ACE,而CABE45,DABACE,所以正确;AE+ACCE,CECD,AE+ACCD,所以错误;ACEBCD,BDCE45,CDE45,ADBADC+BDC45+4590,ADB为直角三角形,所以正确故选:C【考点】本题是考查了全等三角形的判定和性质,等腰直角三角形的性质,直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质和等腰直角三角形的性质是解题的关键4、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作
10、于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键5、B【解析】【详解】解:等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;等腰三角形两腰上的高相等,本选项正确; 等腰三角形最小边不一定底边,故本选项错误;等边三角形的高、中线、角平分线都相等,本选项正确;等腰三角形可以是钝角三角形,故本选项错误,故选B6、C【解析】【分析】利用线段垂直平分线的性质得到,再证明,利用勾股定理即可解决问题【详解】解:由作图方法得垂直平分,故选:【考点】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等
11、于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质7、D【解析】【分析】由于直角三角形的斜边不能确定,故应分5是直角边或5是斜边两种情况进行讨论【详解】当5是直角边时,则第三边=;当5是斜边时,则第三边=综上所述,第三边的长是或3故选D【考点】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键8、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外
12、角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.9、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键10、C【解析】【分析】根据周长的计算公
13、式计算即可.(三角形的周长等于三边之和.)【详解】根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23.【考点】本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.二、填空题1、【解析】【分析】设,在中利用勾股定理求出x即可解决问题【详解】解:是的中点,由折叠的性质知:,设,则, 在中,根据勾股定理得:,即:,解得,故答案为:【考点】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型2、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解
14、【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断ABDABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件3、20m【解析】【分析】试题分析:要求登梯的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理【详解】将圆柱表面按一周半开展开呈长方形,圆柱高16m,底面周长8m,设螺旋形登梯长为xm,x2=(18+4)2+162=40
15、0, 登梯至少=20m故答案为:20m【考点】本题考查圆柱形侧面展开图新问题,涉及勾股定理,掌握按要求将圆柱侧面展开图形的方法,会利用圆周,高与对角线组成直角三角形,用勾股定理解决问题是关键4、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键5、8【解析】【分析】过点A作ACON,根据题意可知AC的
16、长与200米相比较,发现受到影响,然后过点A作AD=AB=200米,求出BD的长即可得出居民楼受噪音影响的时间【详解】解:如图:过点A作ACON,AB=AD=200米,公路PQ上A处点距离O点240米,距离MN 120米,AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,AB=200米,AC=120米,由勾股定理得:BC=160米,CD=160米,即BD=320米,144千米/小时=40米/秒,影响时间应是:32040=8秒故答案为:8【考点】本题考查勾股定理的应用根据题意构建直角三角形是解题关键三、解答题1、见解析【解析】【分析】根据AAS证明ABCDCE,得到DE= A
17、C,BC=EC ,再进行线段的代换即可求解【详解】解:证明:BCDE,ACB=DEC,在ABC和DCE中,ABCDCE(AAS),DE= AC,BC=EC ,DE= AC=AE+EC =AE+BC【考点】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理并根据题意灵活应用是解题关键2、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间【详解】解:(1)村庄能听到宣传,理由:村庄到公路的距离为600米1000米,村庄能听到宣传;(
18、2)如图:过点作于点,假设当宣讲车行驶到点开始影响村庄,行驶点结束对村庄的影响,则米,米,(米),米,影响村庄的时间为:(分钟),村庄总共能听到8分钟的宣传【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键3、(1)BF=5;(2)见解析【解析】【分析】(1)证明AEMBFM即可;(2)证明AECBFD,得到EC=FD,利用等式性质,得到CD=FE【详解】(1)BFAE,MFB=MEA,MBF=MAE,EM=FM,AEMBFM,AE=BF,AE=5,BF=5;(2)BFAE,MFB=MEA,AEC=90,MFB=90,BFD=90,BFD=AEC,DBF=
19、CAE,AE=BF,AECBFD,EC=FD,EF+FC=FC+CD,CD=FE【考点】本题考查了平行线的性质,三角形全等的判定和性质,等式的性质,熟练掌握平行线性质,灵活进行三角形全等的判定是解题的关键4、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可【详解】解:设BExkm,则AE(10x)km,由勾股定理得:在RtADE中,DE2AD2+AE242+(10x)2,在RtBCE中,CE2BC2+BE262+x2,由题意可知:DECE,所以:62+x242+(10x)2,解得:x4所以,EB的长是4km【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键5、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键