1、八年级数学上册第十一章实数和二次根式重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是()ABCD2、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象
2、限D第四象限3、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD4、设,且x、y、z为有理数则xyz()ABCD5、下列运算正确的是()ABCD6、已知 , , ,则下列大小关系正确的是()AabcBcbaCbacDacb7、下列说法正确的有()无限小数不一定是无理数;无理数一定是无限小数;带根号的数不一定是无理数;不带根号的数一定是有理数ABCD8、估计的值应在()A1和2之间B2和3之间C3和4之间D4和5之间9、如图,实数3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A点MB点NC点PD点Q10、下列各式是最简二次根式的是()AB
3、CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、规定一种新运算“*”:a*bab,则方程x*21*x的解为_3、的平方根是 4、比较大小:_5、计算的结果是_三、解答题(5小题,每小题10分,共计50分)1、阅读理解题:定义:如果一个数的平方等于-1,记为,这个数i叫做虚数单位,那么和我们所学的实数对应起来就叫做复数,复数一般表示为(,为实数),叫做这个复数的实部,叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似例如:解方程,解得:,同样我们也可以化简读完这段文字,请你解答以下问题:(1)填空:_,_,_(2)已知,写出一个以,的值为解的一元二次方
4、程(3)在复数范围内解方程:2、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程3、计算:(1);(2)4、计算:(1);(2)5、计算:()1()|3|-参考答案-一、单选题1、D【解析】【分析】根据二次根式的乘法运算法则对A、D选项进行判断,根据算术平方根的意义对B选项进行判断,根据积的乘方对C选项进行判断【详解】解: ,故A选项错误,D选项正确;,故B选项错误;,故C选项错误故选:D【考点】本题考查二次根式的运算及积的乘方熟练掌握各运算法则是解题关键2、D【解析】【分析】依据即可得到 进而得到直线不经
5、过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数3、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3和4之间,即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键4、A【解析】【分析】将已知式子两侧平方后,根据x、y、z的对称性,列出对应等式,进而求出x、y、z的值即可求解【详解】解:两侧同时平方,得到,,xyz,故选择:A【考点】本题考查二次根式的加减法,x、y、z对称性,掌握二次根式加减法法则,利用两边平方比较无理数
6、构造方程是解题关键5、D【解析】【分析】A.根据同类二次根式的定义解题;B.根据二次根式的乘法法则解题;C.根据完全平方公式解题;D.幂的乘方解题【详解】解:A. 与不是同类二次根式,不能合并,故A错误;B. ,故B错误;C. ,故C错误;D. ,故D正确,故选:D【考点】本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键6、A【解析】【分析】将a,b,c变形后,根据分母大的反而小比较大小即可【详解】解:,又,故选:A.【考点】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键7、A【解析】【分析】根据无理数
7、是无限不循环小数进行判断即可【详解】解:无限小数不一定都是无理数,如是有理数,故正确;无理数一定是无限小数,故正确;带根号的数不一定都是无理数,如是有理数,故正确;不带根号的数不一定是有理数,如是无理数,故错误;故选:A【考点】本题考查的是实数的概念,掌握实数的分类、正确区分有理数和无理数是解题的关键,注意无理数是无限不循环小数8、B【解析】【详解】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】=,=,而,45,所以23,所以估计的值应在2和3之间,故选B.【考点】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的
8、关键.9、B【解析】【详解】实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,原点在点P与N之间,这四个数中绝对值最小的数对应的点是点N故选B10、A【解析】【分析】根据最简二次根式的定义即可求出答案【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型二、填空题1、2【解析】【详解】分别根据立方根的定义与算术平方根的定义解答即可【解答】解:+2+42故答案为:2【点评】本题考查了立方根与算术平
9、方根,记熟立方根与二次根式的性质是解答本题的关键2、【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可【详解】根据题意得:x2=1,x=,解得:x,故答案为x.【考点】此题的关键是掌握新运算规则,转化成一元一次方程,再解这个一元一次方程即可3、2【解析】【详解】解:的平方根是2故答案为24、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则5、 【解析】【详解】【分析】根据分式的加减法法则进行计算即可得答案【详解】原式=,故答案为.【考点】本题考查分式的加减运算,熟练
10、掌握分式加减的运算法则是解题的关键,本题属于基础题.三、解答题1、(1)-i,1,0;(2);(3),【解析】【分析】(1)根据题意,则,然后计算即可;(2)利用,得到,即可求解(3)利用配方法求解即可【详解】(1),同理:,每四个为一组,和为0,共有组,(2),以,的值为解的一元二次方程可以为:(3),【考点】本题考查了实数的运算,解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键2、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运
11、算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型3、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算4、 (1)(2)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并同类项;(2)利用平方差和完全平方公式计算(1)原式(2)原式【考点】本题考察了二次根式的混合运算和乘法公式先把二次根式化为最近二次根式,然后再合并同类项,平方差公式,完全平方公式,正确化简二次根式和使用乘法公式是解题的关键5、【解析】【分析】根据负整数幂运算公式,二次根式的运算,绝对值的运算进行化简运算即可.【详解】()|3|3+3【考点】本题主要考查了负整数指数幂、实数的运算,熟练掌握运算公式和法则是解题的关键.