1、八年级数学上册第十一章实数和二次根式必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在四个实数,0,中,最小的实数是()AB0CD2、下列二次根式中,与同类二次根式的是()ABCD3、把四张形状
2、大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD4、使式子在实数范围内有意义的整数x有()A5个B3个C4个D2个5、在根式,中,与是同类二次根式的有()A1个B2个C3个D4个6、下列计算:,其中结果正确的个数为()A1B2C3D47、数轴上ABC三点分别对应实数abc,点AC关于点B对称,若,则下列各数中,与C最接近的数是()A4B4.5C5D5.58、下列各式是最简二次根式的是()ABCD9、计算=()ABCD10、下列四个数中,最大的有理数是
3、()A-1B-2019CD0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将 “数对”放入其中后,得到的数是_2、对于两个非零实数x,y,定义一种新的运算:若,则的值是_3、8的立方根与 的平方根的和是_4、写出一个比大且比小的整数_5、如果方程无实数解,那么的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、对于任意实数m、n,定义关于“”的一种运算如下:mn3m2n例如:2532254,(1)43(1)2411(1)若(3)x2021,求x的值;(2
4、)若y610,求y的最小整数解2、计算(1)(2)3、计算:(1)(2)4、已知是nm3的算术平方根,是m2n的立方根,求BA的平方根5、将一个体积为0.216 m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积-参考答案-一、单选题1、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小2、B【解析】【分析】将每个选项化简成最简二次根式,再根据同类二次根式的定义逐一判断即可【详解】解:A.,与不是同类
5、二次根式;B.,与是同类二次根式;C.与不是同类二次根式;D.与不是同类二次根式;故选:B【考点】本题考查同类二次根式,利用二次根式的性质将每个选项化简成最简二次根式是解题的关键3、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键4、C【解析】【详解】式子在实数范围内有意义 解得:,又要取整数值,的值为:-2、-1、0、1.即符合条件的的值有4
6、个.故选C.5、B【解析】【分析】二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式,继而可得出答案【详解】=5,=,=,故与是同类二次根式的有:,共2个,故选B.【考点】本题考查了同类二次根式的知识,解题的关键是掌握同类二次根式是化为最简二次根式后被开方数相同的二次根式6、D【解析】【分析】根据二次根式的运算法则即可进行判断【详解】,正确;正确;正确;,正确,故选D【考点】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;7、A【解析】【分析】先求出AB的长度,根据点A、C关于点B对称,即可求出BC的长度,再加上4可得出点C所对应的实数【详解】
7、解:A,B两点对应的实数是和4,AB=4,点A与点C关于点B对称,BC=4,点C所对应的实数是,4+4=8,故选:A【考点】本题考查了实数和数轴,解题的关键是:根据两点之间线段的长度就是用右边的点表示的数减去左边的点表示的数8、A【解析】【分析】根据最简二次根式的定义即可求出答案【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型9、C【解析】【分析】根据二次根式的混合运算和根式的性质即可解题.【详解
8、】解: ,故选C.【考点】本题考查了根式的运算,属于简单题,熟悉根式的性质是解题关键.10、D【解析】【分析】根据有理数大小比较判断即可;【详解】已知选项中有理数大小为,故答案选D【考点】本题主要考查了有理数比大小,准确判断是解题的关键二、填空题1、12【解析】【分析】根据题中“数对”的新定义,求出所求即可【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键2、-1【解析】【分析】根据新定义的运算法则即可求出答案【详解】1*(-1)=2,即a-b=2原式=(a-b)=-1故答案为-1.【考点】本题
9、考查代数式运算,解题的关键是熟练运用整体的思想.3、1或5【解析】【分析】先求出-8的立方根,由=9,根据平方根的定义求出9的平方根,然后求出它们的和即可【详解】解:-8的立方根为=-2,而=9,则9的平方根为=3,-2+3=1或-2-3=-5,故答案为:1或-5【考点】本题考查了立方根、平方根、算术平方根的定义,熟练掌握相关定义及求解方法是解题的关键.4、2(或3)【解析】【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案【详解】12,34,比大且比小的整数是2或3故答案为:2(或3)【考点】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间
10、是解答此题的关键5、【解析】【分析】先移项,再根据算术平方根的性质得到答案.【详解】,的结果是非负数,当k-20,方程无实数解,即k2,故答案为:k2.【考点】此题考查方程无解的情况,算术平方根的性质.三、解答题1、(1)x1015;(2)8【解析】【分析】(1)已知等式利用题中的新定义化简,计算即可求出x的值即可;(2)已知不等式利用题中的新定义化简,求出解集,确定出y的最小整数解即可【详解】解:(1)根据题中的新定义化简(3)x2021,得:92x2021,移项合并得:2x2030,解得:x1015;(2)根据题中的新定义化简y610,得:3y1210,移项合并得:3y22,解得:y的最小
11、整数解是8【考点】本题主要考查了新定义下的实数运算和解一元一次不等式,解题的关键在于能够准确根据题意得到新定义的运算结果.2、 (1)9(2)11-【解析】【分析】(1)直接利用二次根式的乘法、乘方、零指数幂分别化简得出答案;(2)直接利用乘法公式以及二次根式的除法运算法则化简得出答案(1)解:原式4+4+19(2)解:原式187 11【考点】此题主要考查了二次根式的混合运算、乘法公式、零指数幂以及乘方的意义,正确化简二次根式是解题关键3、 (1)14;(2)2912【解析】【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算(1)解:原式421
12、214;(2)解:原式121218(65)301212912【考点】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可4、【解析】【分析】根据算术平方根的意义和立方根的意义,得到方程组,然后求解出m、n的值,代入求出A、B的值,从而求出B-A的立方根【详解】解:由题意,得,解得A,【考点】题目主要考查平方根与立方根、算术平方根的定义及性质,二元一次方程组的解法,熟练掌握三个定义是解题关键5、每个小立方体铝块的表面积为0.54m2.【解析】【详解】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2点睛:本题考查了立方根的应用,关键是能根据题意得出方程