1、八年级数学上册第十一章实数和二次根式同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x为实数,在的“”中添上一种运算符号(在,中选择)后,其运算的结果是有理数,则x不可能的是()ABCD2、下列
2、说法错误的是()A中的可以是正数、负数、零B中的不可能是负数C数的平方根一定有两个,它们互为相反数D数的立方根只有一个3、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD4、一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A1B-1C2D-25、若代数式在实数范围内有意义,则x的取值范围为()Ax0Bx0Cx0Dx0且x16、在四个实数,0,中,最小的实数是()AB0CD7、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()
3、ABCD8、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限9、下列运算正确的是()ABCD10、对于数字-2+,下列说法中正确的是()A它不能用数轴上的点表示出来B它比0小C它是一个无理数D它的相反数为2+第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、与最简二次根式5是同类二次根式,则a=_2、已知,当分别取1,2,3,2020时,所对应值的总和是_3、计算:=_;=_.4、125的立方根是_的算术平方根是_5、已知数a、b、c在数粒上的位置如图所示,化简的结果是_三、解答题(5小题,每小题10分,共计50分)1、把下列各
4、数填入相应的集合内、0、0.3737737773(相邻两个3之间的7逐次加1个),(1)有理数集合(2)无理数集合(3)负实数集合 2、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程3、已知,求的值4、计算:(1)(2)5、计算:(1);(2)-参考答案-一、单选题1、C【解析】【分析】根据题意填上运算符计算即可【详解】A.,结果为有理数;B. ,结果为有理数;C.无论填上任何运算符结果都不为有理数;D.,结果为有理数;故选C【考点】本题考查实数的运算,关键在于牢记运算法则2、C【解析】【分析】按照平方根
5、和立方根的性质判断即可【详解】A. 中的可以是正数、负数、零,正确,不符合题意;B. 中的不可能是负数,正确,不符合题意;C. 0的平方根只有0,故原说法错误,符合题意;D. 数的立方根只有一个,正确,不符合题意;故选:C【考点】本题考查了平方根和立方根的性质,解题关键是掌握平方根和立方根的性质3、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3和4之间,即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键4、B【解析】【分析】根据一个正数的两个平方根互为相反数得到关于a的一元一次方程,求解即可【详解】解:根据题意可得:,解得,故选:B【考点】本题考查了平方根
6、的概念,正确理解一个正数的两个平方根的关系,求得a的值是关键5、D【解析】【详解】解:根据分式有意义的条件和二次根式有意义的条件,可知x-10,x0,解得x0且x1.故选D.6、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小7、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考
7、点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键8、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数9、C【解析】【分析】根据二次根式的加法,除法,减法以及二次根式的性质逐个化简计算,从而求解【详解】解:A. 不是同类二次根式,不能进行加法计算,故此选项不符合题意;B. ,故此选项不符合题意;C. ,正确,故此选项符合题意;D. ,故此选项不符合题意故
8、选:C【考点】本题考查二次根式的运算,掌握运算法则正确计算是解题关键10、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可【详解】A数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B,故该说法错误,不符合题意;C是一个无理数,故该说法正确,符合题意;D的相反数为,故该说法错误,不符合题意;故选:C【考点】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键二、填空题1、2【解析】【分析】先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可【详解】解:与最简二次根式5是同类二次根
9、式,且=2,a+1=3,解得:a=2故答案为2【考点】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式2、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键3、 3【解析】【分析】能化简的先化简二次根式,再进行二次根式的乘除运算.【详解】解:(1)=;(2)=3.故答案为(1). (2). 3【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键4、 5 2【解析】【分析
10、】根据立方根及算术平方根可直接进行求解【详解】解:,125的立方根是5,的算术平方根是2;故答案为5;2【考点】本题主要考查立方根及算术平方根,熟练掌握立方根及算术平方根是解题的关键5、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是:0【考点】本题考查了二次根式的性质、整式的加减、以及绝对值的性质,解答此题,要弄清三、解答题1、 (1),0,(2),0.3737737773(3),【解析】【分析】(1)
11、根据有理数的定义进行判定即可得出答案;(2)根据无理数的定义进行判定即可得出答案;(3)根据负实数的定义进行判定即可得出答案(1)有理数集合:,,0,(2)无理数集合:,0.3737737773(3)负实数集合:,【考点】本题主要考查了实数的分类,熟练掌握实数的分类进行求解是解决本题的关键.2、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型3、2022【解析】【分析】根据算术
12、平方根的非负性确定的范围,进而化简绝对值,在根据平方根的定义求得代数式的值【详解】解:,原式化简为,故【考点】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定的范围化简绝对值是解题的关键4、 (1)(2)1+6【解析】【分析】(1)直接化简二次根式,进而利用二次根式的加减运算法则计算得出答案;(2)直接化简二次根式,再利用二次根式的乘除运算法则计算得出答案(1)(2)【考点】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键5、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,掌握二次根式的性质是解本题的关键