1、数列的通项公式与递推公式A组学业达标1在数列an中,a1,an(1)n2an1(n2),则a5等于()AB.C D.答案:B2数列an中,an1an2an,a12,a25,则a5()A3 B11C5 D19解析:an2anan1,a3a1a27,a4a2a312,a5a3a419.故选D.答案:D3已知数列an中,a12,an1ann(nN*),则a4的值为()A5 B6C7 D8解析:a12,an1ann,所以a2a11213,a3a22325,a4a33538.答案:D4已知在数列an中,a1b(b为任意正数),an1(n1,2,3,),能使anb的n的数值可以是()A14 B15C16
2、D17解析:因为a1b,an1,所以a2,a3,a4b.所以an的项是以3为周期重复出现的由于a1a4b,所以a7a10a13a16b.答案:C5已知数列an的通项公式为an9nn,则数列前4项依次为_答案:6886已知数列an满足:a11,an1an(nN*),则数列an的通项公式为_解析:由a11,an1an得an1an,从而ana111,an2.又当n1时,也符合上式故an2.答案:an27已知数列an的通项公式an则a2a3_.解析:根据题意a22222,a333110,所以a2a320.答案:208已知数列an中,a12,an13an(nN*),求数列an的通项公式解析:由an13a
3、n得3.因此可得3,3,3,3(n2)将上面的n1个式子相乘可得3n1.即3n1,所以ana13n1,又a12,故an23n1.当n1时,a12302也满足,故an23n1.B组能力提升9已知数列an的通项为an,则满足an1an的n的最大值为()A3 B4C5 D6解析:an,an1an,所以,化为:.由92n0,112n0,112n92n,解得n.由92n0,112n0,解得n,取n5.由92n0,112n0,112n92n,解得n.因此满足an1an的n的最大值为5.答案:C10在数列an中,a12,an1anlg(1),则an()A2lg n B2(n1)lg nC2nlg n D1n
4、lg n解析:an1anlg(n1)lg na2a1lg 2lg 1a3a2lg 3lg 2anan1lg nlg(n1)相加得ana1lg n,a12,an2lg n.当n1时,也符合上式故an2lg n.答案:A11已知数列an中,a1a2ann2,则an_.解析:当n1时,a11.当n2时,a1a2an1(n1)2,an,故an.答案:12已知数列an对任意的p,qN*满足apqapaq,且a26,则a10_.解析:apqapaq,a42a212,a82a424,a10a2a830.答案:3013已知数列an满足a11,an1(nN*),试探究数列an的通项公式解析:an1,an1an2an2an1,两边同除以2an1an,得,.把以上各式累加得,又a11,an.故数列an的通项公式为an(nN*)14已知函数f(x)2x2x,数列an满足f(log2an)2n.(1)求数列an的通项公式;(2)求证:数列an是递减数列解析:(1)f(x)2x2x,f(log2an)2n,2log2an2log2an2n,an2n,a2nan10,解得ann.an0,ann.(2)证明:1.即an是递减数列