1、函数的单调性与导数(建议用时:40分钟)一、选择题1如图是函数yf (x)的导函数f (x)的图象,则下面判断正确的是()A在区间(2,1)上f (x)是增函数B在区间(1,3)上f (x)是减函数C在区间(4,5)上f (x)是增函数D在区间(3,5)上f (x)是增函数C由导函数f (x)的图象知在区间(4,5)上,f (x)0,所以函数f (x)在(4,5)上单调递增故选C.2函数yxxln x的单调递减区间是()A(,e2)B(0,e2)C(e2,)D(e2,)B因为yxxln x,所以定义域为(0,)令y2ln x0,解得0x0,则cos x,又x(0,),解得x2.则f (x)2x
2、4的解集为()A(1,1)B(1,)C(,1)D(,)B构造函数g(x)f (x)(2x4),则g(1)2(24)0,又f (x)2.g(x)f (x)20,g(x)是R上的增函数f (x)2x4g(x)0g(x)g(1),x1.2设f (x),g(x)是定义在R上的恒大于0的可导函数,且f (x)g(x)f (x)g(x)0,则当axf (b)g(b)Bf (x)g(a)f (a)g(x)Cf (x)g(b)f (b)g(x)Df (x)g(x)f (a)g(a)C因为.又因为f (x)g(x)f (x)g(x)0,所以在R上为减函数又因为ax,又因为f (x)0,g(x)0,所以f (x)
3、g(b)f (b)g(x)因此选C.3若函数yx3bx有三个单调区间,则b的取值范围是_(0,)若函数yx3bx有三个单调区间,则y4x2b0有两个不相等的实数根,所以b0.4若函数f (x)2x2ln x在定义域内的一个子区间(k1,k1)上不是单调函数,则实数k的取值范围是_显然函数f (x)的定义域为(0,),f (x)4x.由f (x)0,得函数f (x)的单调递增区间为;由f (x)0,得函数f (x)单调递减区间为.因为函数在区间(k1,k1)上不是单调函数,所以k1k1,解得k,又因为(k1,k1)为定义域内的一个子区间,所以k10,即k1.综上可知,1k.5(1)已知函数f (
4、x)axekx1,g(x)ln xkx.当a1时,若f (x)在(1,)上为减函数,g(x)在(0,1)上为增函数,求实数k的值;(2)已知函数f (x)x2ln x,aR,讨论函数f (x)的单调区间解(1)当a1时,f (x)xekx1,f (x)(kx1)ekx,g(x)k.f (x)在(1,)上为减函数, 则x1,f (x)0k,k1.g(x)在(0,1)上为增函数,则x(0,1),g(x)0k,k1.综上所述,k1.(2)函数f (x)的定义域为(0,),f (x)1.当44a0,即a1时,得x22xa0,则f (x)0.函数f (x)在(0,)上单调递增当44a0,即a1时,令f (x)0,得x22xa0,解得x11,x210.()若1a0,则x110,x(0,),f (x)在(0,1),(1,)上单调递增,在(1,1)上单调递减()若a0,则x10,当x(0,1)时,f (x)0,当x(1,)时,f (x)0,函数f (x)在区间(0,1)上单调递减,在区间(1,)上单调递增.