1、一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。1已知集合,则如图所示韦恩图中的阴影部分所表示的集合为( C )A B C D2“函数有零点”是“a4”的( B )A. 充分不必要条件B. 必要充分条件C. 充要条件D. 既不充分也不必要条件3下列函数中既不是奇函数也不是偶函数的是( D )A B C D4已知,则的值为( D )A. B. C. D. 5曲线yx2x在点(2,4)处的切线与坐标轴围成的三角形面积为(D)A1 B2 C. D. 6.已知函数f(x),(aR,e是自然对数的底数),在区
2、间0,1上单调递增,则a的取值范围是(c)A0,1 B1,0C1,1 D(,e2)e2,)7若函数f(x)ax2(a21)x3a为偶函数,其定义域为4a2,a21,则f(x)的最小值为(D)A3 B0 C2 D18设函数是定义在上的奇函数,且对任意都有, 当 时, ,则的值为( A ) A. B. C. 2 D.-29在上定义的函数是偶函数,且,若在区间是减函数,则函数 ( )A.在区间上是减函数,区间上是增函数B.在区间上是减函数,区间上是减函数C.在区间上是增函数,区间上是增函数D.在区间上是增函数,区间上是减函数12已知函数则下列结论正确的(C)A在上恰有一个零点 B. 在上恰有两个零点
3、 C在上恰有一个零点 D在上恰有两个零点第卷二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分)。13、12f(x)xn23n(nZ)是偶函数,且yf(x)在(0,)上是减函数,则n_.1或2 14已知f(x6)log2x,则f(8)_.答案15用二分法求方程x346x2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为_ (,1)16设二次函数g(x)的图象在点(m,g(m)处的切线方程为yh(x),若f(x)g(x)h(x),则下面说法正确的有_145_(填出所有正确结论的序号)存在相异的实数x1,x2,使f(x1)f(x2)成立;f(
4、x)在xm处取得极小值;f(x)在xm处取得极大值;不等式|f(x)|恒成立,求c的取值范围。解:a,b6. 由f(x)min+c-得或。20. (12分)某地区预计明年从年初开始的前x个月内,对某种商品的需求总量(万件)与月份x的近似关系为(1)写出明年第x个月的需求量(万件)与月份x的函数关系式,并求出哪个月份的需求量超过1.4万件;(2)如果将该商品每月都投放市场p万件,要保持每月都满足市场需求,则p至少为多少万件解:(1)由题设条件知,. 整理得.即6月份的需求量超过1.4万件;(2)为满足市场需求,则,即.的最大值为, ,即P至少为万件.21.(本小题满分12分)已知函数f(x)ax
5、2(a2)xln x.(1)当a1时,求曲线yf(x)在点(1,f(1)处的切线方程;(2)当a0时,若f(x)在区间1,e上的最小值为2,求a的取值范围;(3)若对任意x1,x2(0,),x1x2,且f(x1)2x10时,f(x)2ax(a2)(x0)令f(x)0,即f(x)0,所以x或x.当01,即a1时,f(x)在1,e上单调递增,所以f(x)在1,e上的最小值是f(1)2;当1e时,f(x)在1,e上的最小值是ff(1)2,不合题意;当e时,f(x)在(1,e)上单调递减,所以f(x)在1,e上的最小值是f(e)0,此时g(x)在(0,)上单调递增;当a0时,只需g(x)0在(0,)上恒成立,因为x(0,),只要2ax2ax10,则需要a0,对于函数y2ax2ax1,过定点(0,1),对称轴x0,只需a28a0,即0a8.综上0a8.22( 10分)选修4-5:不等式选讲 设不等式的解集为,.