1、 北师大版九年级上数学第一章 特殊的平行四边形1.2矩形的性质与判定1课题1.2矩形的性质与判定1授课时间主备人授课人班级审核人第一阶段预学案目标导航学习目标1、理解矩形的意义,知道矩形与平行四边形的区别与联系。2、掌握矩形的性质定理,会用性质定理进行有关的计算与证明。3、掌握直角三角形斜边上中线的性质与应用。学习重点掌握矩形及直角三角形斜边上中线的性质定理,会用定理进行有关的计算与证明。【课前预习】任务一:自主学习(1)自学课本82页:平行四边形活动框架在变化过程中,何时平行四边形的面积最大?这时这个平行四边形的内角是多少度?为什么(2)总结:矩形的定义:有一个角是 的平行四边形,叫做矩形。
2、(3)、练习:四边形、平行四边形、矩形有什么关系?任务二:1.自主学习:小明同学在研究矩形的性质时发现,矩形ABCD的对角线AC将矩形分成两个全等的三角形,在RtABC中,BO与AC之间存在特殊的大小关系。你知道是什么关系吗?并说明理由。归纳:“直角三角形斜边上的中线等于 第二阶段教学案合作探究:(1)由于矩形是特殊的平行四边形,因此它具有平行四边形的所有性质,还具有平行四边形不具有的特殊性质。如图,同学们研究矩形的性质,填写下表:矩形的性质边角对角线对称性具有平行四边形的所有性质具有平行四边形不具有的特殊性质(2)你能证明以下性质的正确性矩形的四个角都是直角 矩形的对角线相等第二阶段教学案精
3、讲点拨:已知:如图,ABCD的四个内角的平分线分别相交于点E、F、G、H求证:四边形EFGH是矩形(2)如图:四边形ABCD中,ABC=ADC=900 ,E、F分别是AC、BD的中点,F求证:EFBD如图,在ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MNBC.设MN交BCA的平分线于点E,交BCA的外角平分线于点F,连接AE、AF。那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论。第三阶段检测案【当堂达标】1(1)矩形具有而一般平行四边形不具有的性质是( )A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分 (2)已知矩形ABCD,请找出相等的线段和相
4、等的角(3)如图,矩形ABCD的两条对角线相交于点O,AOB=60,AB=4cm,求矩形对角线的长.2、矩形有哪些判定方法?结合图形说出它们的几何语言。 3、练习:下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( )(6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形; ( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( )(9)两组对边分别平行,且对角线相等的四边形是矩形 ( )课后反思