1、七年级数学上册第三章整式及其加减单元测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、苹果原价是每斤元,现在按8折出售,假如现在要买一斤,那么需要付费A元B元C元D元2、下列说法不正确的是()A是2个数
2、a的和B是2和数a的积C是单项式D是偶数3、下列代数式中单项式共有()A2个B4个C6个D8个4、某人骑自行车t(小时)走了,若步行,则比骑自行车多用3(小时),那么骑自行车每小时比步行多走()ABCD5、若多项式的值为2,则多项式的值是()A11B13C-7D-56、下列关于多项式2a2b+ab-1的说法中,正确的是()A次数是5B二次项系数是0C最高次项是2a2bD常数项是17、若单项式am1b2与的和仍是单项式,则nm的值是()A3B6C8D98、若,则的值等于()A5B1C-1D-59、已知一个多项式与的和等于,则这个多项式是()ABCD10、对于有理数,定义,则() () 化简后得(
3、)ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x23x3,则3x29x+7的值是 _2、计算的结果等于_3、图形是用等长的木棒搭成的,请观察填表:三角形个数1234n需木棒总数35当三角形的个数是n时,需木棒的总数是_4、若多项式是关于x,y的三次多项式,则_5、三个连续偶数,中间一个数为,则这三个数的积为_三、解答题(5小题,每小题10分,共计50分)1、计算下式的值:,其中,甲同学把错抄成,但他计算的结果也是正确的,你能说明其中的原因吗?2、化简下列各式(1)(2)(3)(4)3、如图,将连续的奇数1,3,5,7按图1中的方式排成一个数表,用一个十字框
4、框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示(1)若x=17,则a+b+c+d= (2)移动十字框,用x表示a+b+c+d= (3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由4、(1)若(a2)2+|b+3|0,则(a+b)2019(2)已知多项式(6x2+2axy+6)(3bx2+2x+5y1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b1|b1,且|a+3b3|5,求ab的值5、先化简,再求值:,其中,-参考答案-一、单选题1、A【解析】【分析】按8折出售就是买原价的80,即用原价a乘以8 0即可.【详解】由题意得
5、,a80=0.8a(元).故选A.【考点】本题考查了列代数式,仔细审题,明确题目中的数量关系是解答此类题的关键,本题要熟记打几折就是卖原价的百分之几十.2、D【解析】【分析】根据2a的意义,分别判断各项即可.【详解】解:A、=a+a,是2个数a的和,故选项正确;B、=2a,是2和数a的积,故选项正确;C、是单项式,故选项正确;D、当a为无理数时,是无理数,不是偶数,故选项错误;故选D.【考点】本题考查了代数式的意义,注意a不一定为整数是解题的关键.3、C【解析】【分析】根据单项式的定义,即可得到答案【详解】解:中,单项式有,共6个,故选C【考点】本题主要考查单项式的定义,掌握“数字和字母,字母
6、和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键4、B【解析】【分析】先求出两种方法各自的速度,再将速度作差即可得出所求【详解】骑自行车的速度为:步行速度为:骑自行车比步行每小时快出的路程:故选B【考点】本题考查代数式计算的应用,掌握速度、时间、路程之间的关系是解题关键5、D【解析】【分析】将多项式变形为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主要考查代数式的求值,利用整体代入思想求解是解题的关键6、C【解析】【分析】根据多项式的概念逐项分析即可【详解】A 多项式2a2b+ab-1的 次数是3,故不正确;B 多项式2a2b+ab-1的二次项系数是1,故
7、不正确;C 多项式2a2b+ab-1的最高次项是2a2b ,故正确;D 多项式2a2b+ab-1的常数项是-1,故不正确;故选:C【考点】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数7、C【解析】【分析】首先可判断单项式am-1b2与a2bn是同类项,再由同类项的定义可得m、n的值,代入求解即可【详解】解:单项式am-1b2与a2bn的和仍是单项式,单项式am-1b2与a2bn是同类项,m-1=2,n=2,m=3,n=2,8、C【解析】【分析】将两整
8、式相加即可得出答案【详解】,的值等于,故选:C【考点】本题考查了整式的加减,熟练掌握运算法则是解本题的关键9、D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果【详解】解:根据题意列得:-()=,故选D【考点】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键10、C【解析】【分析】根据新定义的计算规则先计算括号内,按法则转化为整式加减计算,去括号合并,再根据新定义转化为整式的加减计算去括号,最后合并同类项即可【详解】解:,(x+y)(x-y)3x=2(x+y)-(x-y)3x=(2x+2y-x+y)3x=(x+
9、3y)3x=2(x+3y)-3x=2x+6y-3x=-x+6y故选C【考点】本题考查新定义运算法则,掌握新定义运算法则实质,化为整式加减的常规计算,去括号,合并同类项是解题关键二、填空题1、-2【解析】【分析】首先把3x29x7化成3(x23x)7,然后把x23x3代入求解即可【详解】解:x23x3,3x29x73(x23x)73(3)797-2故答案为:-2【考点】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简2、【解析】【分
10、析】根据合并同类项法则即可求解【详解】故答案为:【考点】本题考查了合并同类项法则,先判断两个单项式是不是同类项,然后按照法则相加是解题关键3、2n+1【解析】【分析】根据已知的数据可得,即可得解;【详解】,当三角形的个数是n时,需木棒的总数是2n+1故答案是:2n+1【考点】本题主要考查了图形规律题,准确分析计算是解题的关键4、0或8【解析】【分析】直接利用多项式的次数确定方法得出答案【详解】解:多项式是关于,的三次多项式,或,或,或8故答案为:0或8【考点】本题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键5、#【解析】【分析】根据连续偶数之间的差值为2可求【详解】三个连续偶数,中
11、间一个数为前一个偶数为:,后一个偶数为:三个数的积为:故答案为:【考点】本题考查了平方差公式、单项式乘多项式等,解题的关键在于用n表示出三个偶数三、解答题1、见解析【解析】【分析】先化简,得出结果为;故将抄错不影响最终结果【详解】解:=化简结果与无关将抄错不影响最终结果【考点】本题主要考查了多项式的加减法运算,掌握去括号法则和合并同类项法则并熟练运用是解题关键2、 (1)(2)(3)(4)-1【解析】【分析】(1)直接进行同类项的合并即可(2)先去括号,然后进行同类项的合并(3)先去括号,然后进行同类项的合并(4)先去括号,然后进行同类项的合并(1)原式=(2)原式=(3)原式=(4)原式=【
12、考点】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则3、(1)68(2)4x(3)M的值不能等于2020【解析】【分析】(1)直接求和;(2)a+b+c+d=(x12)+(x2)+(x+2)+(x+12),化简即可;(3)令M=2020,则4x+x=2020,求出x,若x是奇数就说明成立,否则就不能为2020.【详解】观察图1,可知:a=x12,b=x2,c=x+2,d=x+12(1)当x=17时,a=5,b=15,c=19,d=29,a+b+c+d=5+15+19+29=68故答案为68(2)a=x12,b=x2,c=x+2,d=x+12,a+b+c+d=(
13、x12)+(x2)+(x+2)+(x+12)=4x故答案为4x(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404404是偶数不是奇数,与题目x为奇数的要求矛盾,M不能为2020【考点】本题考核知识点:观察总结规律. 解题关键点:用式子表示规律.4、(1)1;(2)a1,b2;(3)ab8【解析】【分析】(1)利用非负数和的性质可求a2,b3,再求代数式的之即可;(2)将原式去括号合并同类项原式(63b)x2+(2a2)x6y+7,由结果与x取值无关,得到63b0,2a20,解方程即可;(3)利用非负数性质可得a+b=0且|b1|=b1,可得,由|a+
14、3b3|5,可得a+3b8或a+3b2,把ab代入上式得:b4或1(舍去)即可【详解】解:(1)(a2)2+|b+3|0,且(a2)20,|b+3|0,a20,b+30,解得a2,b3,(a+b)2019(23)20191故答案为:1;(2)原式6x2+2axy+63bx22x5y+1,(63b)x2+(2a2)x6y+7,由结果与x取值无关,得到63b0,2a20,解得:a1,b2;(3)(a+b)2+|b1|b1,(a+b)2+|b1|-(b1)=0,|b1|(b1),|b1|-(b1)0,(a+b)20,a+b=0且|b1|=b1,解得,|a+3b3|5,a+3b3=5或a+3b3=-5,a+3b8或a+3b2,把ab代入上式得:b4或1(舍去),ab448【考点】本题考查非负数和的性质,以及代数式的值与字母x的取值无关,绝对值化简,掌握非负数和的性质,以及代数式的值与字母x的取值无关的解法是解题关键5、,-20【解析】【分析】原式去括号,再合并同类项化简,继而将a、b的值代入计算可得【详解】解:原式当,时,原式【考点】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则