1、七年级数学上册第一章丰富的图形世界专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、2022年北京冬奥会的奖牌“同心”表达了“天地合人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图
2、是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A合B同C心D人2、经过折叠可以得到四棱柱的是()ABCD3、下列几何体中,主视图和俯视图都为矩形的是()ABCD4、经过圆锥顶点的截面的形状可能是()ABCD5、下列说法,不正确的是()A圆锥和圆柱的底面都是圆B棱锥底面边数与侧棱数相等C棱柱的上、下底面是形状、大小相同的多边形D长方体是四棱柱,四棱柱是长方体6、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A点动成线B线动成面C面动成体D面与面相交得到线7、用一个平面去截一个几何体,截面可能都是圆的几何体是(
3、)A球、棱柱B球、圆锥、圆柱C球、正方体D圆锥、棱柱8、长方体中,与一条棱异面的棱有()A2条B3条C4条D6条9、不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征甲同学:它有4个面是三角形;乙同学:它有8条棱该模型的形状对应的立体图形可能是()A三棱柱B四棱柱C三棱锥D四棱锥10、将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个立体图形的表面展开图如图所示,这个立体图形顶点的个数是_.2、如图所示的图形可以折成一个正方体.折好以后,与点P重合
4、的两点是_.3、一个六棱柱有_个顶点4、下图是某粮仓的示意图,该粮仓可以看作由常见几何体中的_和_构成的5、如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于_三、解答题(5小题,每小题10分,共计50分)1、欧拉(Euler,1707年1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式(1)观察下列多面体,并把表格补充完整
5、:名称三棱锥三棱柱正方体正八面体图形顶点数V468 棱数E6 12 面数F45 8(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式: (3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表面三角形的个数为x个,八边形的个数为y个,求x+y的值2、小明在学习了展开与折叠这一课后,明白了很多几何体都能展开成平面图形于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的和根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱(2)现在小明想将剪断的重新粘贴
6、到上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到中的什么位置?请你帮助小明在上补全(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积3、如图是一个正方体,图的阴影部分是这个正方体展开图的一部分,请你在图中再涂黑两个正方形后成图的表面展开图,请涂3种不同的情况4、将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形(1)以下两个方格图中的阴影部分能表示立方体表面展开图的是_(填A或B)(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相似(包
7、括不全等)的立方体表面展开图(用阴影表示)(3)如图中的实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中(用阴影表示) 5、如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FGCD,交AE于点G,连接DG(1)求证:四边形DEFG为菱形;(2)若CD=8,CF=4,求的值-参考答案-一、单选题1、D【解析】【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D【考点】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键2、B【解析
8、】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题【详解】A、折叠后两个底面重合到了一个面上,不能得到四棱柱,故该项不符合题意;B、可以得到四棱柱,故该项符合题意;C、折叠后缺少一个底面,不能折成四棱柱,故该项不符合题意;D、折叠后两个底面重合,不能构成四棱柱,故该项不符合题意;故选:B【考点】此题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及展开图的各种情形3、B【解析】【详解】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图是矩形,俯视图均为圆,故C选项错误;D、主视图为梯形,俯视图为矩形,故D选项错误.故选:
9、B.4、B【解析】【详解】试题解析:经过圆锥顶点的截面的形状可能B中图形,故选B5、D【解析】【分析】根据常见立体图形的定义和特征进行判断即可解答【详解】解:A、圆锥和圆柱的底面都是圆,正确,不符合题意;B、根据棱锥的侧棱的定义和底面边数的定义可知,棱锥底面边数与侧棱数相等,正确,不符合题意;C、根据棱柱的上下两个底面是平行且全等的图形知,棱柱的上、下底面是形状、大小相同的多边形,正确,不符合题意;D、长方形是四棱柱,但四棱柱不一定是长方体,此选项错误,符合题意,故选:D【考点】本题考查认识立体图形,熟练掌握各立体图形的定义和特征是解答的关键6、B【解析】【分析】点动线,线动成面,将滚筒看做线
10、,在运动过程中形成面【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B【考点】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键7、B【解析】【分析】根据圆柱、正方体、棱柱、球、圆锥、长方体的形状特点:如果截面的形状是圆,那么原来的几何体有可能是圆锥、圆柱、球体,由此判断即可【详解】解:A、D中棱柱截面一定不是圆,此选项错误;C、正方体截面一定不是圆,此选项错误;B、球、圆锥、圆柱都有曲面,所以截面可能都是圆故选:B【考点】本题考查用一个平面去截一个几何体;一般的,截面与几何体的几个面相交,就得到几条交线,截面与平面相交就得到几边形;截面与曲面相交,得到曲线,截面是圆或不规
11、则图形8、C【解析】【分析】由题意根据长方体中棱与平面位置关系可知与一条棱异面的平面上所有棱长都异面,以此进行分析即可得出答案【详解】解:因为与一条棱异面的平面上有4条棱长,所以长方体中,与一条棱异面的棱有4条故选:C【考点】本题考查长方体中棱与平面位置关系,熟练掌握异面的概念是解题的关键9、D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱故选:D10、A【解析】【分析】利用正方体及其表面展开图的特点解题【详解】A. 剪去后,恰好能折成一个正方体,符合题意;B. 剪去后,不能折成一个正方
12、体,不符合题意;C. 剪去 后,不能折成一个正方体,不符合题意;D. 剪去 后,不能折成一个正方体,不符合题意.故选:A【考点】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.二、填空题1、6【解析】【分析】由平面图形的折叠及常见立体图形的展开图解题;【详解】这个几何体是三棱柱,它的顶点个数为6个.【考点】本题考查立体图形的展开图,根据展开图判断立体图形是解题的关键.2、V,T【解析】【分析】根据正方体表面展开图的特点即可求解.【详解】
13、由正方体表面展开图的特点可知P跟V重叠,V跟T重叠故填V,T.【考点】此题主要考查几何体的展开图,解题的关键是熟知正方体表面展开图的特点.3、12【解析】【分析】根据棱柱的棱数与顶点数的关系即可求解【详解】解:六棱柱的棱数为6,顶点数为:,故答案为:12【考点】本题考查了立体几何的认识,运用棱柱的棱数与顶点数的关系解决问题是解题的关键4、 圆锥 圆柱【解析】【分析】根据常见的几何体的形状可得答案【详解】解:一座粮仓,它可以看作是由圆锥和圆柱几何体组成的,故答案为:圆锥;圆柱【考点】本题主要考查了认识几何体,关键是认识常见的几何体,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等5、24cm3【
14、解析】【详解】解:从左面看这个长方体时看到的图形面积为6cm2,所以长方体的高为3cm;依题意得:长方体的体积=234=24(cm3)故答案为24cm3.三、解答题1、(1)6,9,12,6;(2)V+FE=2;(3)x+y=14【解析】【分析】(1)观察可得多面体的顶点数,棱数和面数;(2)依据表格中的数据,可得顶点数+面数-棱数=2;(3)根据条件得到多面体的棱数,即可求得面数,即为x+y的值【详解】解:(1)三棱柱的棱数为9;正方体的面数为6;正八面体的顶点数为6,棱数为12;故答案为:6,9,12,6;(2)由题可得,V+F-E=2,故答案为:V+F-E=2;(3)有24个顶点,每个顶
15、点处都有3条棱,两点确定一条直线,共有2432=36条棱,24+F-36=2,解得F=14,x+y=14【考点】本题主要考查了欧拉公式,简单多面体的顶点数V、面数F及棱数E间的关系为:V+F-E=2这个公式叫欧拉公式公式描述了简单多面体顶点数、面数、棱数特有的规律2、(1)8;(2)见解析;(3)200000立方厘米【解析】【分析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积【详解】解:(1)由图可得,小明共剪了8条棱,故答
16、案为:8(2)如图,粘贴的位置有四种情况如下:(3)长方体纸盒的底面是一个正方形,可设底面边长acm,长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,420+8a880,解得a100,这个长方体纸盒的体积为:20100100200000立方厘米【考点】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键3、如图所示,见解析.【解析】【分析】根据正方体的展开图(如:一四一结构),将所给图形填涂完整即可.【详解】如图所示:【考点】本题考查了正方体的展开图,解决本题的关键是正确理解题意,熟练掌握正方体的展开图的
17、各种形式.4、(1)A;(2)见解析;(3)见解析【解析】【分析】(1)有“田”字格的展开图不能围成正方体,据此可排除B,从而得出答案;(2)作图方法很多,只要正确即可;(3)根据裁剪线裁剪,再展开【详解】(1)两个方格图中的阴影部分能表示立方体表面展开图的是A故答案为:A(2)立方体表面展开图如图所示:(3)将其表面展开图画在方格图中如图所示:【考点】本题考查了几何体的展开图,熟记正方体的11种展开图形式是解题的关键5、(1)证明见试题解析;(2)【解析】【分析】(1)由折叠的性质,可以得到DG=FG,ED=EF,1=2,由FGCD,可得1=3,再证明 FG=FE,即可得到四边形DEFG为菱形;(2)在RtEFC中,用勾股定理列方程即可CD、CE,从而求出的值【详解】解:(1)证明:由折叠的性质可知:DG=FG,ED=EF,1=2,FGCD,1=3,2=3FG=FE,DG=GF=EF=DE,四边形DEFG为菱形;(2)设DE=x,根据折叠的性质,EF=DE=x,EC=8x,在RtEFC中,即,解得:x=5,CE=8x=3,=【考点】本题主要考查了折叠问题,勾股定理,矩形的性质,菱形的判定和性质,熟练掌握相关知识点是解题的关键