1、北师大版七年级数学上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、a与2互为倒数,那么a等于()A2B2CD2、如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面
2、相对的面上的字是()A跟B百C走D年3、比0小1的数是()A0B1C1D14、多项式与多项式相加后,不含二次项,则常数m的值是()A2BCD5、下列各式中,结果是100的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列各数中,非负数的数是()A2B1C2D02、有理数a,b,c在数轴上对应的点如图所示,则下列各式中错误的是()ABCD3、下列四个图形中,能作为正方体的展开图的是()ABCD4、下列语句中正确的是()A数字0也是单项式B单项式a的系数与次数都是1Cxy是二次单项式D的系数是5、若,则a、b的关系为()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分
3、,共计25分)1、中国古代的算筹计数法可追溯到公元前5世纪摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示, 表示2369,则 表示_2、芝加哥与北京的时差是 -14 小时(负数表示同一时刻比北京晚),小明2019年11月4日7:00乘坐飞机从北京起飞,15小时后到达芝加哥,此时芝加哥的时间为_3、对于任意有理数a、b,定义一种新运算“”,规则如下:abab+(ab),例如3232+(32)7,则(5)4_4、若xa+1y3与x4y3是同类项,则a的值是_5、的绝对值是_,的倒
4、数是_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)-52+3-(-1);(2)()2、对于多项式,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含项?第二个问题是:在第一问的前提下,如果,多项式的值是多少?(1)小明同学很快就完成了第一个问题,也请你把你的解答写在下面吧;(2)在做第二个问题时,马小虎同学把,错看成,可是他得到的最后结果却是正确的,你知道这是为什么吗?3、如图,数轴上点A,B,M,N表示的数分别为1,5,m,n,且AMAB,点N是线段BM的中点,求m,n的值4、观察下列单项式:-x,3x2,-5x3,7x4,-37x19,39x20,写出第n个单项式
5、,为了解这个问题,现提供下面的解题思路:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n个单项式是什么?(4)请你根据猜想,写出第2018个,第2019个单项式.5、如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a3,b2时,求矩形中空白部分的面积-参考答案-一、单选题1、C【解析】【分析】乘积是1的两数互为倒数据此判断即可【详解】解:a与2互为倒数,那么a等于故选:C【考点】本题主要考查了倒数的定义:若两个数的乘积是1,我
6、们就称这两个数互为倒数解题关键是掌握倒数的定义2、B【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,在此正方体上与“建”字相对的面上的汉字是“百”故选B【考点】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题3、B【解析】【分析】根据题意列式计算即可得出结果【详解】解:01=1,即比0小1的数是1故选:B【考点】本题主要考查了有理数的减法,理清题意,正确列出算式是解答本题的关键4、B【解析】【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二次项
7、时,有,解得故选B【考点】本题主要考查了合并同类项的应用,准确计算是解题的关键5、B【解析】【分析】直接根据负号的个数和绝对值的定义化简即可【详解】解:A、,故错误B、,故正确C、=-100,故错误D、=-100,故错误【考点】本题考查多重符号的化简、绝对值的化简,熟练掌握多重符号化简的规律是解题的关键,理解绝对值的定义是重点二、多选题1、ABD【解析】【分析】根据非负数的特点分析判断即可;【详解】根据判断可知非负数为:2;1;0;故选ABD【考点】本题主要考查了有理数中非负数的判断,准确分析判断是解题的关键2、BCD【解析】【分析】根据数轴得出ab0c,再根据不等式的性质和绝对值逐个判断即可
8、【详解】解:从数轴可知:ab0c,A、ac,b0,abbc,正确,故本选项不符合题意;B、ab0,a-b0,|a-b|=b-a,原式错误,故本选项符合题意;C、ab0,-a-b,原式错误,故本选项符合题意;D、ab,-a-b,-a-c-b-c,原式错误,故本选项不符合题意;故选:BCD【考点】本题考查了数轴和不等式的性质、绝对值等知识点,能熟记不等式的性质和绝对值的性质的内容是解此题的关键3、ABC【解析】【分析】根据正方体的11种展开图判断即可;【详解】由题可知,是正方体的展开图;故选ABC【考点】本题主要考查了正方体的展开图,准确分析判断是解题的关键4、ACD【解析】【分析】根据单项式系数
9、、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数【详解】解:A、数字0也是单项式,该选项正确;B、单项式a的系数是-1,次数是1,该选项错误;C、xy是二次单项式,该选项正确;D、的系数是,该选项正确;故选:ACD【考点】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键5、AD【解析】【分析】根据绝对值的意义求解即可【详解】解:由知:或或故选:A,D【考点】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键三、填空题1、【解析】【分析】根据算筹记数的规定可知,“ ”表
10、示一个4位负数,再查图找出对应关系即可得表示的数【详解】解:由已知可得:“ ”表示的是4位负整数,是故答案为:【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定2、2019年11月4日8时【解析】【分析】根据题意用7加上15求出北京时间然后减去14,然后根据有理数的减法和加法运算法则进行计算即可得解【详解】解:7+15-14=7+1=8,所以到达芝加哥的时间为2019年11月4日8时故答案为:2019年11月4日8时【考点】本题考查有理数的减法,读懂题目信息,表示出芝加哥的时间是解题的关键3、29【解析】【分析】根据abab+(ab),可以求得题目中所求式子
11、的值,本题得以解决【详解】解:abab+(ab),(5)4(5)4+(5)4(20)+(9)29故答案为:29【考点】此题考查新定义运算,有理数的混合运算,掌握新定义的运算方法是解题的关键4、3【解析】【分析】根据同类项的定义即可求出结论【详解】解:xa+1y3与x4y3是同类项,a+14,解得a3,故答案为:3【考点】此题考查的是根据同类项求指数中的参数,掌握同类项的定义是解题关键5、 3 【解析】【分析】根据绝对值和倒数的定义解答即可【详解】解:-3的绝对值是3;-3的倒数是;故答案为:3;【考点】本题考查了绝对值和倒数的定义,熟练掌握绝对值和倒数的定义是解题的关键四、解答题1、(1)0;
12、(2)-23【解析】【分析】(1)根据有理数的四则运算法则进行运算即可求解;(2)根据有理数的四则运算法则进行运算即可,注意先算乘除,再算加减,有括号先算括号内的【详解】解:(1)原式=-10+33+1=-10+9+1=0,故答案为:0;(2)原式=,故答案为:【考点】本题考查了有理数的四则运算法则,注意运算顺序及符号,计算过程中细心即可2、(1)见解析;(2)正确,理由见解析【解析】【分析】(1)代数式中不含xy项就是合并同类项以后xy项得系数等于0,据此即可求得k的值;(2)把和代入(1)中的代数式求值即可判断【详解】解:(1)因为,所以只要,这个多项式就不含项即时,多项式中不含项;(2)
13、因为在第一问的前提下原多项式为:,当时,当时,所以当和时结果是相等的【考点】本题考查了合并同类项法则以及求代数式的值,理解不含xy项就是xy项的系数是0是关键3、m3,n4或m5,n0【解析】【分析】根据题意得:AB6再由AMAB,可得AM4然后分两种情况讨论,即可求解【详解】解:数轴上,点A,B表示的数分别为1,5,AB6AMAB,AM4当点M在点A右侧时,点A表示的数为1,AM4,点M表示的数为3,即m3点B表示的数为5,点N是线段BM的中点,点N表示的数为4,即n4 当点M在点A左侧时,点A表示的数为1,AM4,点M表示的数为5,即m5点B表示的数为5,点N是线段BM的中点,点N表示的数
14、为0,即n0综上,m3,n4,或m5,n0【考点】本题主要考查了数轴上两点间的距离,熟练掌握数轴上两点间的距离,并利用分类讨论思想解答是解题的关键4、(1)见解析(2)见解析(3)(1)n(2n1)xn(4)第2018个单项式是4035x2018,第2019个单项式是4037x2019【解析】【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案【详解】(1)这组单项式的系数依次为:1,3,5,7,系数为奇数且奇次项为负数,故单项式的系数的符号是:(1)n,绝对值规
15、律是:2n1;(2)这组单项式的次数的规律是从1开始的连续自然数(3)第n个单项式是:(1)n(2n1)xn(4)第2018个单项式是4035x2018,第2019个单项式是4037x2019【考点】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键5、(1)Sabab+1;(2)矩形中空白部分的面积为2;【解析】【分析】(1)空白区域面积=矩形面积-两个阴影平行四边形面积+中间重叠平行四边形面积;(2)将a=3,b=2代入(1)中即可;【详解】(1)Sabab+1;(2)当a3,b2时,S632+12;【考点】本题考查阴影部分面积,平行四边形面积,代数式求值;能够准确求出阴影部分面积是解题的关键