1、等比数列的性质A级基础巩固一、选择题1等比数列中,a5a145,则a8a9a10a11(B)A10B25C50D75解析a8a11a9a10a5a14,a8a9a10a11(a5a14)225.2在等比数列an中,a46,a818,则a12(C)A24B30C54D108解析a8a4q4,q43,a12a8q454.3在等比数列an中,a32a2,a516a4,则a6a7的值为(B)A124B128C130D132解析a2a32,a4a516,又a4a5(a2a3)q2,q28.a6a7(a4a5)q2168128.4已知an为等比数列,且an0,a2a42a3a5a4a625,那么a3a5等
2、于(A)A5B10C15D20解析aa2a4,aa4a6,a2a3a5a25,(a3a5)225,又an0,a3a55.5(2019济南高二检测)已知an是等比数列,a4a7512,a3a8124,且公比为整数,则公比q为(B)A2B2CD解析a4a7a3a8512,又a3a8124,所以或因为公比为整数,故q532,q2.6在等比数列an中,anan1,且a7a116,a4a145,则等于(A)ABCD6解析,解得或.又anan1,a43,a142.二、填空题7公差不为零的等差数列an中,2a3a2a110,数列bn是等比数列,且b7a7,则b6b8 16 .解析2a3a2a112(a3a1
3、1)a4a7a0,b7a70,b7a74.b6b8b16.8等比数列an中,an0,且a5a69,则log3a2log3a9 2 .解析an0,log3a2log3a9log3(a2a9)log3(a5a6)log39log3322.三、解答题9已知an为等比数列,且a1a964,a3a720,求a11.解析an为等比数列,a1a9a3a764,又a3a720,a3,a7是方程t220t640的两个根a34,a716或a316,a74,当a34时,a3a7a3a3q420,1q45,q44.当a316时,a3a7a3(1q4)20,1q4,q4.a11a1q10a3q864或1.10已知an是
4、首项为19,公差为2的等差数列,Sn为an的前n项和(1)求通项公式an及Sn;(2)设bnan是首项为1,公比为3的等比数列,求数列bn的通项公式解析(1)因为an是首项为19,公差为2的等差数列,所以an192(n1)2n21,即an2n21;Sn19n(2)n220n,即Snn220n.(2)因为bnan是首项为1,公比为3的等比数列,所以bnan3n1,即bn3n1an3n12n21.B级素养提升一、选择题1已知2a3,2b6,2c12,则a,b,c(A)A成等差数列不成等比数列B成等比数列不成等差数列C成等差数列又成等比数列D既不成等差数列又不成等比数列解析解法一:alog23,bl
5、og261log2 3,clog2 122log2 3.bacb.解法二:2a2c36(2b)2,ac2b,选A2已知等比数列an中,各项都是正数,且a1,a3,2a2成等差数列,则(C)A1B1C32D32解析设数列an的公比为q,由已知可得a3a12a2q22q10,q1或1(舍),则q2(1)232.3设an是由正数组成的等比数列,公比q2,且a1a2a3a30230,那么a3a6a9a30等于(B)A210B220C216D215解析设Aa1a4a7a28,Ba2a5a8a29,Ca3a6a9a30,则A、B、C成等比数列,公比为q10210,由条件得ABC230,B210,CB210
6、220.4在数列an中,a12,当n为奇数时,an1an2;当n为偶数时,an12an1,则a12等于(C)A32B34C66D64解析依题意,a1,a3,a5,a7,a9,a11构成以2为首项,2为公比的等比数列,故a11a12564,a12a11266.故选C二、填空题5已知an是递增等比数列,a22,a4a34,则此数列的公比q 2 .解析本题主要考查等比数列的基本公式,利用等比数列的通项公式可解得a4a3a2q2a2q4,因为a22,所以q2q20,解得q1,或q2.因为an为递增数列,所以q2.6如图,在等腰直角三角形ABC中,斜边BC2,过点A作BC的垂线,垂足为A1;过点A1作A
7、C的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;,依此类推,设BAa1,AA1a2,A1A2a3,A5A6a7,则a7.解析由题意知数列an是首项a12,公比q的等比数列,则a7a1q62()6.三、解答题7设an是各项均为正数的等比数列,bnlog2an,若b1b2b33,b1b2b33,求此等比数列的通项公式an.解析由b1b2b33,得log2(a1 a2a3)3,a1a2a3238,aa1a3,a22,又b1b2b33,设等比数列an的公比为q,得log2()log2(2q)3.解得q4或,所求等比数列an的通项公式为ana2qn222n3或an252n.8等差数列an的前n项和为Sn,已知S3a,且S1,S2,S4成等比数列,求an的通项公式解析设an的公差为d.由S3a得3a2a,故a20或a23.由S1,S2,S4成等比数列得SS1S4.又S1a2d,S22a2d,S44a22d,故(2a2d)2(a2d)(4a22d)若a20,则d22d2,所以d0,此时Sn0,不合题意;若a23,则(6d)2(3d)(122d),解得d0或d2.因此an的通项公式为an3或an2n1.