ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.48MB ,
资源ID:92198      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-92198-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011年湖南高考数学必考点题型热点预测与分析:3立体几何与空间向量.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011年湖南高考数学必考点题型热点预测与分析:3立体几何与空间向量.doc

1、2011年湖南高考数学必考点题型热点预测与分析命题热点三 立体几何与空间向量 (理科)高考对立体几何与空间向量的考查主要有三个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:例如利用空间向量证明线面平行与垂直、利用空间向量求空间角等.在高考试卷中,一般有12个客观题和一个解答题.多为容易题和中档题.(文科)高考对立体几何的考查主要有两个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系,线面平行、垂直关系的证明等;在高考试卷中,一般有12个客观题和一个解答题.多为容易题和中档题

2、.预测1.若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于A B2C D6解析:由正视图可知该三棱柱的底面边长等于2,高是1,所以其侧面积等于,故选D. 动向解读:三视图是高考的热点内容,几乎每年必考,除了考查对简单几何体的三视图的判断外,更多地是以三视图为载体考查几何体的体积、表面积的计算,在由三视图中给出的数据得出原几何体的有关数据时,要充分利用三视图“主左一样高、主俯一样长、俯左一样宽”的性质.预测2. 如图4,在四棱锥中,底面是矩形, 平面,,于点 (1) 求证:; (2) 求直线与平面所成的角的余弦值.(本小题主要考查空间线面关系、直线与平面所成的角等知识, 考查数形结

3、合的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明: 平面,平面,.,平面,平面,平面.平面, 3分, ,平面,平面,平面.平面,. 6分(2)解法1:由(1)知,又, 则是的中点,在Rt中,得,在Rt中,得, .设点到平面的距离为,由, 8分得.解得, 10分设直线与平面所成的角为,则, 12分 . 直线与平面所成的角的余弦值为. 14分解法2: 如图所示,以点为坐标原点,建立空间直角坐标系, 则,. . 8分设平面的一个法向量为,由可得:令,得. 10分设直线与平面所成的角为,则. 12分.直线与平面所成的角的余弦值为. 14分预测3.(理科)正的边长为4,是边上

4、的高,分别是和边的中点,现将沿翻折成直二面角(1)试判断直线与平面的位置关系,并说明理由;(2)求二面角的余弦值;(3)在线段上是否存在一点,使?证明你的结论解:法一:(I)如图:在ABC中,由E、F分别是AC、BC中点,得EF/AB,又AB平面DEF,EF平面DEF,AB平面DEF (II)ADCD,BDCD,ADB是二面角ACDB的平面角,ADBD,AD平面BCD,取CD的中点M,这时EMAD,EM平面BCD,过M作MNDF于点N,连结EN,则ENDF,MNE是二面角EDFC的平面角.在RtEMN中,EM=1,MN=,tanMNE=,cosMNE=.()在线段BC上存在点P,使APDE,证

5、明如下:在线段BC上取点P。使,过P作PQCD与点Q,PQ平面ACD 在等边ADE中,DAQ=30AQDEAPDE.法二:()以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,则A(0,0,2)B(2,0,0)C(0,.平面CDF的法向量为设平面EDF的法向量为,则 即,所以二面角EDFC的余弦值为;()设,又,把,所以在线段BC上存在点P使APDE.预测4. 如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形。()求证:;()求正方形ABCD的边长;()求直线与平面所成角的正弦值。解:(1) AE是圆柱的母线底

6、面BEFC, 1分又面BEFC 2分又ABCD是正方形 又面ABE 3分又面ABE 4分(2)四边形为矩形,且ABCD是正方形 EFBC 四边形EFBC为矩形 BF为圆柱下底面的直径 1分 设正方形ABCD的边长为,则AD=EF=AB=在直角中AE=2,AB=,且BE2+AE2= AB2,得BE2=2-4 在直角中BF=6,EF=,且BE2+EF2= BF2,的BE2=36-2 2分解得=,即正方形ABCD的边长为 3分(3)解法一:如图以F为原点建立空间直角坐标系,则A(,0,2),B(,4,0),E(,0,0),(,0, 2),(,4,0), (,0,0) 1分设面AEF的法向量为(,),

7、则 3分令,则即(,) 4分设直线与平面所成角的大小为,则 6分所以直线与平面所成角的正弦值为。 7分解法二:如图以E为原点建立空间直角坐标系,则A(0,0,2),B(4,0,0),F(0,0),(-4,0), (0,-2),(0,0) 1分设面AEF的法向量为(,),则 3分令,则即(,) 4分设直线与平面所成角的大小为,则 6分所以直线与平面所成角的正弦值为。 7分ABCDDEFGA1B1C1D1预测5. 如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G.()求证:;()求二面角的余弦值;()求正方体被平面所截得的几何体的体积.()证明:在正方体中,平面平面 平面平

8、面,平面平面ABCDDEFGA1B1C1xyz .-3分 ()解:如图,以D为原点分别以DA、DC、DD1为x、y、z轴,建立空间直角坐标系,则有D1(0,0,2),E(2,1,2),F(0,2,1), 设平面的法向量为 则由,和,得, 取,得, -6分又平面的法向量为(0,0,2)故; 截面与底面所成二面角的余弦值为. -9分()解:设所求几何体的体积为V, , , ,-11分故V棱台 V=V正方体-V棱台. -14分预测6. 如图,在长方体中,且(I)求证:对任意,总有;(II)若,求二面角的余弦值;(III)是否存在,使得在平面上的射影 平分?若存在, 求出的值, 若不存在,说明理由解:

9、(I)以为坐标原点,分别以所在直线为轴,轴,轴,建立空间直角坐标系,设,则,从而,即(分)(II)由()及得,设平面的法向量为,则,从而可取平面的法向量为,又取平面的法向量为,且设二面角为,所以(分)(III) 假设存在实数满足条件,由题结合图形,只需满足分别与所成的角相等,即 ,即,解得 所以存在满足题意得实数,使得在平面上的射影平分 (14分)预测7. 已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形()求此几何体的体积;()求异面直线与所成角的余弦值;()探究在上是否存在点Q,使得,并说明理由解:()由该几何体的三视图可知垂直于底面,且,此几何

10、体的体积为; 5分 解法一:()过点作交于,连接,则或其补角即为异面直线与所成角,在中,;即异面直线与所成角的余弦值为。9分()在上存在点Q,使得;取中点,过点作于点,则点为所求点;连接、,在和中,以为圆心,为直径的圆与相切,切点为,连接、,可得;,; 14分解法二:()同上。()以为原点,以、所在直线为、轴建立如图所示的空间直角坐标系,则,得,又异面直线与所成角为锐角,可得异面直线与所成角的余弦值为。()设存在满足题设的点,其坐标为,则, ;点在上,存在使得,即,化简得, ,代入得,得,;满足题设的点存在,其坐标为。预测8. 一个几何体是由圆柱和三棱锥组合而成,点、在圆的圆周上,其正(主)视

11、图、侧(左)视图的面积分别为10和12,如图3所示,其中,(1)求证:;(2)求二面角的平面角的大小AODEEA侧(左)视图A1D1AD11A11EBCOD图3(本小题主要考查空间线线、线面关系,二面角,三视图等知识,考查化归与转化数学思想方法,以及空间想象能力、推理论证能力、运算求解能力)方法1:(1)证明:因为,所以,即 又因为,所以平面因为,所以4分(2)解:因为点、在圆的圆周上,且,所以为圆的直径 设圆的半径为,圆柱高为,根据正(主)视图、侧(左)视图的面积可得,AD11A11EBCOD6分解得所以,7分过点作于点,连接,由(1)知,所以平面因为平面,所以所以为二面角的平面角9分由(1

12、)知,平面,平面,所以,即为直角三角形在中,则 由,解得 因为13分所以所以二面角的平面角大小为14分方法2:(1)证明:因为点、在圆的圆周上,且,所以为圆的直径设圆的半径为,圆柱高为,根据正(主)视图、侧(左)视图的面积可得,AD11A11EBCOD2分解得所以,3分以点为原点,、所在的射线分别为轴、轴建立如图的空间直角坐标系,则,5分AD11A11EBCODxyz因为,所以所以9分(2)解:设是平面的法向量,因为,所以即 取,则是平面的一个法向量11分由(1)知,又,所以平面所以是平面的一个法向量12分因为,所以而等于二面角的平面角,所以二面角的平面角大小为14分方法3:(1)证明:因为,

13、所以,即又因为,所以平面因为,所以4分(2)解:因为点、在圆的圆周上,且,所以为圆的直径设圆的半径为,圆柱高为,根据正(主)视图、侧(左)视图的面积可得,AD11A11EBCOD6分解得所以,7分AD11A11EBCODxyz以点为原点,、所在的射线分别为轴、轴建立如图的空间直角坐标系,则,9分设是平面的法向量,则即 取,则是平面的一个法向量11分由(1)知,又,所以平面所以是平面的一个法向量12分因为,所以而等于二面角的平面角,所以二面角的平面角大小为14分动向解读:本题主要考查空间向量在解决立体几何问题中的应用,这是每年高考的必考内容,也是高考试卷中相对较为固定的考查模式,即以空间几何体为载体,考查空间中直线与平面、平面与平面的平行关系与垂直关系的论证,考查空间中两异面直线所成的角、直线与平面所成的角、二面角的求解等,有时还会以开放性的设问方式进行考查.这类问题通常可以有两种解法,一是利用有关的定理与性质直接进行论证和求解,二是通过建立空间直角坐标系,利用空间向量进行证明或计算.这类考题通常有2至3个小问题,在解答过程要注意各个小问题结果之间的连贯性,这样可以简化解题过程,提高解题速度.w.w.w.k.s.5.u.c.o.m

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3